弱束缚核

氘核

$$r_0 = 1.25 \, fm, a = 0.65 \, fm, V_0 = -72.2 \, V$$

备选原子核

计算的主要是存在单中子晕的原子核,主要有 ¹¹Be, ^{15,19}C, ³¹Ne, ³⁷Mg

更细致一点,计算的是s波的单中子晕

s波halo

¹¹Be, ^{15,19}C

p波halo

³¹Ne, ³⁷ Mg

¹¹Be与¹¹B

¹⁰Be + *n*的binding potential参数来自Capel的PHYSICAL REVIEW C **70**, 064605 (2004),还有一篇相关的工

TABLE I. Parameters of the ¹⁰Be-n potential [see Eqs. (14)–(16)].

$V_{l ext{even}}$ (MeV)	V_{lodd} (MeV)	V_{LS} (MeV fm ²)	a (fm)	R ₀ (fm)
62.52	39.74	21.0	0.6	2.585

束缚能为0.504MeV

$$V_{cf}(\mathbf{r}) = V_0(r) + \mathbf{L} \cdot \mathbf{I} V_{LI}(r),$$

$$W(r) = \left[1 + \exp\left(\frac{r - R_0}{a_0}\right)\right]^{-1}$$

$$V_0(r) = -V_l f(r, R_0, a)$$

¹¹Be与¹¹B

 $^{10}\mathrm{B}+n$ 的binding potential参数来自Aage Bohr的Nuclear Structure(1965)

$$V = \left(-51 + 33 \frac{N - Z}{A}\right) \text{MeV}$$

$$V_{\text{ts}} = -0.44V = \left(22 - 14 \frac{N - Z}{A}\right) \text{MeV}$$

束缚能为11.454 MeV

解得的势阱深度为31.26 MeV

$$R = r_0 A^{1/3}$$
 $r_0 = 1.27 \, fm$

$$a = 0.67 \, fm$$

¹¹Be(n + ¹⁰Be Core)的s波函数

11 B $(n + ^{10}$ B Core)的s波函数

¹¹Be与¹¹B

$$\langle r \rangle = 2.23 \, fm$$

$$\sigma_r = 1.02 \, fm$$

束缚能为11.454 MeV

$$\langle r \rangle = 5.98 \, fm$$

$$\sigma_r = 3.62 \, fm$$

束缚能为0.504 MeV

¹¹Be与²⁹Si

$$\langle r \rangle = 3.15 \, fm$$

$$\sigma_r = 2.22 \, fm$$

束缚能为8.47 MeV

$$\langle r \rangle = 5.98 \, fm$$

$$\sigma_r = 3.62 \, fm$$

束缚能为0.504 MeV

PHYSICAL REVIEW C 93, 064609 (2016)

Proposal of a directly measurable parameter quantifying the halo nature of one-neutron nuclei

Masanobu Yahiro, Shin Watanabe,* Masakazu Toyokawa, and Takuma Matsumoto Department of Physics, Kyushu University, Fukuoka 819-0395, Japan (Received 23 February 2016; published 20 June 2016)

$$R = r_0 A^{1/3}$$
 $r_0 = 1.27 \, fm$

$$a = 0.67 \, fm$$

$$\langle r \rangle = 4.92 \, fm$$

$$\sigma_r = 2.60 \, fm$$

B. Halo parameter in the vicinity of the weak-binding limit

No halo nucleus is discovered at extremely small S_n such as $S_n \ll 0.01$ MeV. We then do the following c+n+T model calculation to see the behavior of \mathcal{H} in the vicinity of $S_n=0$. The ground state $u_\ell(r)$ of the c+n system is described with the Woods-Saxon potential determined by the well-depth method; namely, the depth parameter V_0 is tuned to measured S_n with the radius and diffuseness parameters fixed at the standard values $1.27A_c^{1/3}$ fm and 0.67 fm [38], where A_c is the mass number of c. The potential U_c between c and T is obtained by folding the modified FL t matrix with the densities

$$\langle r \rangle = 6.10 \, fm$$

$$\sigma_r = 3.48 \, fm$$