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Outline of this paper

Hyperspherical Harmonics (HH) basis

Application: 6He, phase shift, dipole transition
a+n—+n



Introduction of HH basis

Define the Jacobi coordinate:
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Define the hyperangle:
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3B situation: p =X, Ty, tang =y/x



Introduction of HH basis

All the angle variable: L5, = (% 2, Qy)

Grand angular momentum

T operator in CM frame: Operator

Eignefuntion of the operator is the HH function:

Ky =KK+HY Y

The index contains a set of quantum numbers:
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Introduction of HH basis

The HH function has the form:

The wave function can be expanded in:

The Schrodinger equation can be written in:
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Introduction of HH basis

The potential matrix is given by:
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The potential takes the form:
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Projection over the forbidden states:
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Dipole strength

The E1 transition strength from gs to a continuum is
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The dipole electric operator takes the form( HH form)
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The matrix element can be calculated:
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R-matrix method

The radial function has the asymptotic form:
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The wave function in the internal region can be expanded:
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Introduce the Bloch-Schrodinger equation:
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The R-matrix can be expressed as:
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CSM

We are solving the complexed scaled Schrodinger equation:
HO)Y(0) = UOHU(O)Y(O) = EO)P(6)

The complex eigenvalues are:
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The response function can be expressed :
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The dipole strength is obtained from the response function:
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pseudostate method

The pseudostate method just solve the eigenvalue problem:

The dipole strength for specific energy is obtained with:
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The differential relation can be recovered by:
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The function is in general chosen as a Gaussian, with a width parameter.



Application to 6He

For exotic nuclei, the binding energy is very small, and many
observables are very sensitive to its value.

Fine-tuning is required for its potential

1. Renormalizing the a+n by a factor A,,. This factor is close to unity (see Table
I), but slightly affects the o + n phase shifts. In particular the p; /2 and pq /o
resonances are lower than the experimental values.

2. Rescaling the attractive part of the n+n Minnesota interaction.?!) This option
leaves the oo + n phase shitts unchanged.

3. Introducing a phenomenological three-body potential depending on the hyper-
radius only. This potential is defined as
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3B phase shift
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Fig. 1. o+ n + n eigenphase shifts for J = 0 (left panel) and J = 1~ (right panel), and for the
renormalized n +n potential. The Kmax values vary by steps of 2 (the minimum and maximum
values are indicated).



3B phase shift
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Fig. 2. Upper panel: 07 and 1~ eigenphase shifts for different conditions of calculations (Kpax = 24
for J =07 and Kpax = 19 for J = 17. Lower panel: corresponding CSM energies with § = 0.5.
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Dipole strength

dB(E1)/dE (e2fm2/MeV)
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Fig. 3. °®He dipole strengths. Left panel: comparison of the R-matrix (solid lines) and CSM (dashed
lines) methods for different 6 values. Right panel: comparison of the R-matrix (solid lines) and
PS (dotted lines) methods for different o values. The experimental data are taken from Ref. 36).
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Fig. 4. He dipole-strength distributions with different potentials (see Table I) and with two meth-
ods for removing « + n forbidden states: supersymmetry (left panel) and projection (right

panel).



