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• Mostly studied 3N systems: Examination of “bare” nucleon-nucleon (𝑝𝑝 and 

𝑝𝑛) force models.

• Rigorous 3N calculations assure the existence of 3N forces 

→ applied to heavier nuclei



1. Introduction

• What can we learn from the study of 𝑇 =
3

2
3N systems (𝑛𝑛𝑛, 𝑝𝑝𝑝) ?

-- direct information of 𝑛𝑛-force and 𝑇 =
3

2
3N forces

→ apply to neutron-rich nuclei,  neutron matter (neutron star)

• How to study 𝑇 =
3

2
3N systems (𝑛𝑛𝑛, 𝑝𝑝𝑝):

-- No bound state 

-- Final state of reactions: e.g.,   3He 𝜋−, 𝜋+ 3𝑛, 3H 𝑛, 𝑝 3𝑛
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1. Introduction

• Experimental search for 3𝑛 resonance 
3He 𝜋−, 𝜋+ 3𝑛, 7Li 𝑛, 3𝑛 , 7Li 7Li, 11C 3𝑛, 7Li 11B, 15O 3𝑛,…

Mostly negative, but a few positive results

• Experimental results that suggested the existence of 4𝑛 resonant state:
14Be, 10Be + 4𝑛 [2002],   4He 8He, 8Be [2016], 7Li 7Li, 10C [2022],   8He 𝑝, 𝑝 4He [2022]

Refs:

Marqués et al., PRC65 (2002),     Kisamori et al., PRL 116 (2016),                   

Faestermann et al., PLB 824 (2022),       M. Duer et al., Nature 606 (2022)

• Theoretical studies on 3𝑛 & 4𝑛 systems   → contradictory results

• Review: 

Marqués & Carbonell (2021). Euro. Phys. J. A 57 (2021) 105. 

https://doi.org/10.1140/epja/s10050-021-00417-8
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In this presentation:

• Quick review of theoretical calculations of 3𝑛 & 4𝑛 systems

• Theoretical method to study 3𝑛 continuum state [Response function, Faddeev method]

• Results of 3𝑛
Ref.:  S. Ishikawa, Three-neutron bound and continuum states. 

PRC 102 (2020) 034002

https://doi.org/10.1103/PhysRevC.102.034002

• Results of 3𝑝
Ref.: S. Ishikawa, Spin-isospin excitation of 3He with three-proton final state. 

Prog. Theor. and Exp. Phys. 2018 (2018) 013D03

https://doi.org/10.1093/ptep/ptx183
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2.  Theoretical study for 3𝑛- (& 4𝑛-) resonance

• Realistic nucleon-nucleon potentials

No bound state for 3𝑛- & 4𝑛-systems 

• Resonance is related to a pole of t-matrix in complex energy
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Pole trajectory in complex energy plane 
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𝐸𝑏

attractive

𝑉

Scattering t-matrix for complex energy 𝜔

𝑡 𝜔 = 𝑉 + 𝑉
1

𝜔 − 𝐻0
𝑡 𝜔 = 𝑉 + 𝑉

1

𝜔 − 𝐻0 − 𝑉
𝑉

Discrete eigen value    𝐻0 + 𝑉 ȁ ۧΨ 𝑧 = 𝑧ȁ ۧΨ 𝑧

𝑡 𝜔 = 𝑉 + 𝑉 ۧȁΨ 𝑧
1

𝜔 − 𝑧
ۦ ȁΨ 𝑧 𝑉 +⋯

- Bound state: 𝑧 = 𝐸𝑏 ,→ pole at real energy 𝐸𝑏 < 0

- Complex energy: 𝑧 = 𝐸𝑟 −
𝑖

2
Γ → pole at 𝐸𝑟 , −

1

2
Γ



3𝑛 studies in complex energy

• Complex energy eigenvales (1)

- Analytic continuation with separable potentials

• Complex energy eigenvales (2)

- Complex scaling method            𝑥 → 𝑥𝑒𝑖𝜑

→ Unphysically large attractive effect is required to obtaine 3𝑛

bound state (or resonance)
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Pole trajectory for 3𝑛 states with separable 𝑛𝑛 potential
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3𝑛
1

2

−

: 𝜆 3𝑃2 , 𝜆 1𝐷2 = 3.38,6.883𝑛
3

2

−

: 𝜆 3𝑃2 = 3.22

3𝑛

Separable 𝑛𝑛 potential: 𝑥 𝑉 𝑥′ = −𝜆𝑣 𝑥 𝑣 𝑥′

Complex E-plane

𝜆 = 1



Pole trajectory for 3𝑛 states with additional 3𝑛 potential
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𝑉𝑖𝑗𝑘 𝑇 =
3

2

3𝑛 𝐽𝜋
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𝑛𝑛𝑝 T =
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3𝑛 and 4𝑛 studies at real energy

• Neutrons confined in a trapping potential:

W 𝑟𝑖 = 𝑉0
1

1 + 𝑒 𝑟𝑖−𝑅 /𝑎WS

Extrapolate to real world [Strength 𝑉0 → 0 ]

→ Existence of 3𝑛 and 4𝑛 resonance
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Energy for 4𝑛 0+ states

11

Artificial external wells of Woods-Saxon 

with (range, strength)=(𝑅, 𝑉0)

4𝑛

𝐸~2 MeV

W 𝑟𝑖 = 𝑉0
1

1 + 𝑒 𝑟𝑖−𝑅 /𝑎WS

𝑎WS = 0.65 fm

Green’s function Monte Carlo (GFMC) calculations

!?



Energies for 3𝑛 and 4𝑛 states
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Monte Carlo method:

4𝑛

3𝑛

𝐸4𝑛~2 MeV

𝐸3𝑛 < 𝐸4𝑛



Energies for 3𝑛 and 4𝑛 states
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Ab initio no-core Gamow shell model

4𝑛

3𝑛

𝐸4𝑛 = 3~5 MeV

𝐸3𝑛 < 𝐸4𝑛



3. How to study 3-body system without 2-body bound state

Notations:

• Total Hamiltonian (only 2NF for simplicity)

𝐻 = 𝐻0 + 𝑉1 + 𝑉2 + 𝑉3
𝑉1 = 𝑉23 𝑒𝑡𝑐. (odd man out notation)

• (Asymptotic) 3-body states are specified by momentum-variables Ԧ𝑞, Ԧ𝑝 ൿห Ԧ𝑞, Ԧ𝑝

𝐻0 ൿห𝐸; Ԧ𝑞, Ԧ𝑝 = 𝐸 ൿห𝐸; Ԧ𝑞, Ԧ𝑝 , 𝐸 =
ℏ2

𝑚
𝑞2 +

3ℏ2

4𝑚
𝑝2 = 𝐸𝑞 + 𝐸𝑝

• Eigenstate of 3-body Hamiltonian with going + / incoming (−) boundary 

conditions:

𝐻 ඀ቚΨ
𝑞 Ԧ𝑝
(±)

𝐸 = 𝐸 ඀ቚΨ
𝑞 Ԧ𝑝
(±)

𝐸
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Reactions to study 3𝑛 & 3𝑝 states

• Reactions to produce 3𝑛 (or 3𝑝) state with simple reaction mechanism
e.g., 3H 𝑛, 𝑝 3𝑛 3He 𝑝, 𝑛 3𝑝

• In PWIA      
Two processes:  𝑛 + 𝑝 → 𝑝 + 𝑛, 3H → 𝑛𝑛𝑛 (or 3He → 𝑝𝑝𝑝) 

Transition amplitude: 𝑇 ∝ 𝑡𝑛𝑝→𝑝𝑛 × Ψ
𝑞 Ԧ𝑝
(−)

𝐸 ෠𝑂 Ψ𝑏

3H

𝑛

𝑝
𝑛
𝑛

𝑝

𝑛
𝑛
𝑛
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Response functions 

• In PWIA, the cross section can be written in terms of response function:

𝑅 ෠𝑂 𝐸 = න𝑑 Ԧ𝑞𝑑 Ԧ𝑝 Ψ
𝑞 Ԧ𝑝
(−)

𝐸𝑞 + 𝐸𝑝 ෠𝑂 Ψ𝑏

2

𝛿 𝐸 − 𝐸𝑞 − 𝐸𝑝

= −
1

𝜋
Im Ψ𝑏

෠𝑂† 1
𝐸 + 𝑖𝜀 − 𝐻

෠𝑂 Ψ𝑏

• If the system has a complex energy eigen value, 𝐸𝑟 −
𝑖

2
Γ:   

𝐻ȁ ۧΨ = 𝐸𝑟 −
𝑖

2
Γ ȁ ۧΨ → 𝑅 ෠𝑂 𝐸 =

𝑅𝑟

𝜋

Γ

2

𝐸−𝐸𝑟
2+

1

2
Γ

2

• When the complex energy is close to real axis (i.e. Γ is small enough) so that 

𝑅 ෠𝑂 𝐸 has a peak around 𝐸 = 𝐸𝑟, it is called as a resonance peak.

16
Note:   ෠𝑂𝑐 = σ𝑖=1

3 𝑒𝑖𝑄∙ Ԧ𝑟𝑖 𝑡𝑖
(−)

, ෠𝑂𝐿 = σ𝑖=1
3 𝑒𝑖𝑄∙ Ԧ𝑟𝑖 ෠𝑄 ∙ ො𝜎𝑖 𝑡𝑖

(−)
, ෠𝑂𝑇 = σ𝑖=1

3 𝑒𝑖𝑄∙ Ԧ𝑟𝑖 ෠𝑄 × ො𝜎𝑖 𝑡𝑖
(−)



Calculation of the Response functions 

𝑅 ෠𝑂 𝐸 = න𝑑 Ԧ𝑞𝑑 Ԧ𝑝 Ψ
𝑞 Ԧ𝑝
(−)

𝐸𝑞 + 𝐸𝑝 ෠𝑂 Ψ𝑏

2

𝛿 𝐸 − 𝐸𝑞 − 𝐸𝑝

• Use the Green’s function method to avoid to calculate Ψ
𝑞 Ԧ𝑝
(−)

𝐸 = 𝐸𝑞 + 𝐸𝑝

for all possible combinations of 𝐸𝑞 and 𝐸𝑝 for a given 𝐸:

𝑅 ෠𝑂 𝐸 = −
1

𝜋
Im Ψ𝑏

෠𝑂† 1
𝐸 + 𝑖𝜀 − 𝐻

෠𝑂 Ψ𝑏

• Def. ۧȁΨ 𝐸 : wave function corresponding to the process 3H → 3𝑛:

ۧȁΨ 𝐸 =
1

𝐸 + 𝑖𝜀 − 𝐻
෠𝑂ȁ ۧΨ𝑏
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• Asymptotic form of ۧȁΨ 𝐸

Ԧ𝑥 Ԧ𝑦 Ψ = ۦ ȁԦ𝑥 Ԧ𝑦
1

𝐸+𝑖𝜀−𝐻
෠𝑂ȁ ۧΨ𝑏 → 𝑁

𝑒𝑖𝐾𝑅

𝑅5/2
Ψ
𝑞 Ԧ𝑝
(−) ෠𝑂 Ψ𝑏

𝑅 = 𝑥2 +
4

3
𝑦2 𝐾 =

𝑚

ℏ2
𝐸

• Once the function ۧȁΨ 𝐸 is obtained, all of the 3-body breakup amplitudes 

Ψ
𝑞 Ԧ𝑝
(−) ෠𝑂 Ψ𝑏 are calculated from ۧȁΨ 𝐸 .

Calculation of the Response functions 
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References: Faddeev calculations for 3𝛼(0+) systems:

S. I. : PRC 87 (2013) 055804, PRC 90 (2014) 061604, PRC 94 (2016) 061603



How to calculate the wave function ۧȁΨ 𝐸

• Three-body problem under the 3-body Hamiltonian 𝐻

• Expression by the diagram

ۧȁΨ 𝐸 =
1

𝐸+𝑖𝜀−𝐻
෠𝑂ȁ ۧΨ𝑏 =

• → full 3-body dynamics including 3-body T-matrix 𝑇 𝐸

• Faddeev (1961) :
Decompose the T-matrix with respect to interaction pair in the final state 

𝑇 𝐸 = 𝑇(1) 𝐸 + 𝑇(2) 𝐸 + 𝑇(3) 𝐸

19

ȁ ۧΨ𝑏෠𝑂



Apply the Faddeev theory to calculate ۧȁΨ 𝐸

• Ref. L.D. Faddeev, “Scattering Theory for a Three-Particle System”

Soviet Phys. JETP 12 (1961) 1014:

Decompose the T-matrix with respect to interaction pair in the final state

𝑇 𝐸 = 𝑇(1) 𝐸 + 𝑇(2) 𝐸 + 𝑇(3) 𝐸

𝑇(1) 𝐸 = 𝑉1 + 𝑉1𝐺0 𝐸 𝑇 𝐸

20
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Faddeev equations for T-matrix

• Multiple scattering with rearrangements for the Faddeev components 
𝑇(𝑖) 𝐸 𝑖 = 1,2,3

𝑇(1) 𝐸 = 𝑡1 𝐸 + 𝑡1 𝐸 𝐺0 𝐸 𝑇(2) 𝐸 + 𝑇(3) 𝐸

21

𝑇(2) 𝐸 𝑇(3) 𝐸

𝑇(1) 𝐸

𝑡1 𝐸 𝑡1 𝐸

+ ⋯

𝑡1 𝐸



Faddeev equations for ۧȁΨ 𝐸

• Channel Hamiltonian

𝐻𝑖 = 𝐻0 + 𝑉𝑖 , 𝐻 = 𝐻𝑖 + 𝑉𝑗 + 𝑉𝑘

• In general
෠𝑂 = ෠𝑂1 + ෠𝑂2 + ෠𝑂3

• Faddeev decomposition

ۧȁΨ =
1

𝐸 + 𝑖𝜀 − 𝐻
෠𝑂ȁ ۧΨ𝑏 = ȁ ۧΦ1 + ȁ ۧΦ2 + ȁ ۧΦ3

• Faddeev equations for the Faddeev components 

ȁ ۧΦ1 =
1

𝐸 + 𝑖𝜀 − 𝐻1
෠𝑂1ȁ ۧΨ𝑏 +

1

𝐸 + 𝑖𝜀 − 𝐻1
𝑉1 ۧȁΦ2 + ȁ ۧΦ3

1,2,3 → 2,3,1 → 3,1,2
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Multiple scattering with rearrangement

ȁ ۧΦ1 =
1

𝐸 + 𝑖𝜀 − 𝐻1
෠𝑂1ȁ ۧΨ𝑏 +

1

𝐸 + 𝑖𝜀 − 𝐻1
𝑉1 ۧȁΦ2 + ȁ ۧΦ3

1

2

3

1

2

3

1

2

3

Channel-1
Channel-3

Channel-2
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ȁ ۧΦ1ȁ ۧΦ3

ȁ ۧΦ2



4. Calculations of the response functions

Response function 𝑅 ෠𝑂 𝐸, 𝑄 for the transition from the 3H ground state to 

3𝑛
3

2

−
continuum state with  ෠𝑂 = σ𝑖=1

3 𝑒𝑖𝑄∙ Ԧ𝑟𝑖 𝑡𝑖
(−)

.

[0] Calculations with Argonne V18−𝑛𝑛 potential

Extrapolation procedures with giving additional attractions to the 3𝑛 Hamiltonian

[1] Multiplying a factor to the 𝑛𝑛 potential

[2] Introducing a 3BP

[3] Additional trapping potential
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[0] Calculations with AV18−𝑛𝑛 potential

25

𝑸 = 𝟑𝟎𝟎 𝐌𝐞𝐕/𝐜

𝟒𝟎𝟎 𝐌𝐞𝐕/𝐜

𝟓𝟎𝟎 𝐌𝐞𝐕/𝐜
Arrows:

𝐸 =
𝑄2

2𝑚
− 𝐵 3H −

𝑄2

6𝑚

Quasifree process that 

the momentum Q is 

absorbed by one neutron.



[1] Multiplying a factor to the 𝑛𝑛 potential

• Modify the 𝑛𝑛 potential by multiplying a factor 1 − 𝛼

𝑉 2𝑆+1𝐿𝐽 → 1 − 𝛼 × 𝑉 2𝑆+1𝐿𝐽

• Note: 𝑛𝑛 1𝑆0 -state has a bound state for 𝛼 < −0.08

• The factor will be multiplied only to 𝑉 3𝑃2 −
3𝐹2 [attractive]

𝑛𝑛 3𝑃2 −
3𝐹2 bound state exists for 𝛼 < −3.39

3𝑛
3

2

−
bound state exists   for 𝛼 < −2.98
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[1] Multiplying a factor to the 𝑛𝑛 potential

27

𝛼 = −1 𝛼 = −2

𝛼 = −2.4 𝛼 = −2.8

• Fitting of the response function

𝑅 𝐸 =
𝑏 𝐸−𝐸𝑟 +𝑐Γ

𝐸−𝐸𝑟
2+ ΤΓ2 4

+𝑎0 + 𝑎1 𝐸 − 𝐸𝑟
+𝑎2 𝐸 − 𝐸𝑟

2

• Extracted values of 𝐸𝑟 and Γ are 𝑄-

independent for −2.7 ≤ 𝛼 ≤ −1.6

𝑸 = 𝟑𝟎𝟎, 𝟒𝟎𝟎, 𝐚𝐧𝐝 𝟓𝟎𝟎 𝐌𝐞𝐕/𝐜



[1] Multiplying a factor to the 𝑛𝑛 potential

28

3𝑛 binding energy

- - - Fitted to 3𝑛 binding energy

Extracted 𝐸𝑟 ±
Γ

2

Peak energy

𝛼 → 0
No pole close to the real axis



[2] Introducing a 3BP

• Three-body potential

𝑊 𝑇 = ෍

𝑛=1

2

𝑊𝑛𝑒
− 𝑟12

2 +𝑟23
2 +𝑟31

2 /𝑏𝑛
2 ෠𝑃 𝑇

• Range parameters: 𝑏1 = 4.0 fm, 𝑏2 = 0.75 fm
Short range repulsive term  𝑊2 = +35.0 MeV

[Hiyama et al., PRC93 (2016) 044004]

Required value of 𝑊1 for 4𝑛 0+ state to bind: 𝑊1 = −36.14 MeV

• 𝑛
3

2

−
bound state exists  for 𝑊1 < −80 MeV

⇔𝑊1 = −2.55 MeV to reproduce 3H binding energy
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Pole trajectory for 3𝑛 states and energy for 4𝑛 0+ states

30

4𝑛

𝑉𝑖𝑗𝑘 𝑇 =
3

2

−36 ~ − 30 MeV

RIKEN2016 experiment 4He 8He, 8Be

⇔𝑊1 = −2.55 MeV to reproduce 3H binding energy



[2] Introducing a 3BP

31

𝑸 = 𝟑𝟎𝟎, 𝟒𝟎𝟎, 𝐚𝐧𝐝 𝟓𝟎𝟎 𝐌𝐞𝐕/𝐜

𝑊1 = −10 MeV
𝑊1 = −30 MeV

𝑊1 = −50 MeV
𝑊1 = −70 MeV

𝐸𝑟~4 MeV, Γ~10 MeV for 𝑊1 = −36 MeV

𝑊1 → 0
No pole close to the real axis

3𝑛 binding energy
- - - Fitted to 3𝑛 binding energy

Extracted 𝐸𝑟 ±
Γ

2

Peak energy



[3] Additional trapping potential

32

W 𝑟𝑖 = 𝑊WS
1

1+𝑒 𝑟𝑖−𝑅WS /𝑎WS
, 𝑎WS = 0.65 fm

3𝑛 resonance ?

Similar result with Gandolfi(2019) & Li(2019), 

which suggest the existence of 3n resonance.



[0] Calculations with Argonne V18−𝑛𝑛 potential

No resonance peak

Extrapolation methods 

[1] Multiplying a factor to the 𝑛𝑛 potential

[2] Introducing a 3BP

Complex pole energy is far from real axis  → nonexistence of 3𝑛 resonance

[3] Additional trapping potential

→existence of 3𝑛 resonance

33

?



“2𝑛” system with Gaussian + trapping potential

• 3𝑛
3

2

−
state  ~ 𝑛-dineutron in P-wave (L = 1)

• 2-body (“2𝑛”) P-wave state in trapping-potential

• Effective potential:

𝑉eff 𝑥 = 𝑣𝐺𝑒
−

𝑥
𝑟𝐺

2

+
ℏ2𝐿 𝐿 + 1

𝑚𝑥2
+ ෍

𝑖=1,2

𝑊 𝑟𝑖

Parameters: 𝑟𝐺 = 2.5fm, 𝑣𝐺 = −50 MeV “no resonance state”

W 𝑟𝑖 = 𝑊WS

1

1 + 𝑒 𝑟𝑖−𝑅WS /𝑎WS
, 𝑎WS = 0.65 fm
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“2𝑛” system with Gaussian + trapping potential

35

𝑉eff 𝑥 = 𝑣𝐺𝑒
−

𝑥
𝑟𝐺

2

+
ℏ2𝐿 𝐿 + 1

𝑚𝑥2
+ ෍

𝑖=1,2

𝑊 𝑟𝑖 , 𝐿 = 1

solid curves → no bound state exists 

dashed curves → a bound state

As the attractive effect is reduced, the barrier 

appears at positive energy.

→

An extra repulsive effect that does not exist 

for the bound states.



“2𝑛” energies with trapping potential 

36

?

Extrapolation of bound state energies

→

Positive energy at 𝑊WS = 0 MeV

However, soon after getting into the 

continuum region, the 𝑊WS dependence is 

quite different from that in the bound state 

region. 

The extrapolation is no longer reliable.Bound state 

Resonance (phase shift=90°)



5. 3He 𝑝, 𝑛 𝑝𝑝𝑝
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3He

PWIA



3He 𝑝, 𝑛 𝑝𝑝𝑝
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Resonance?

Horizontal lines: 

𝐷𝑁𝑁 0° , 𝐷𝐿𝐿 0° in 𝑝, 𝑛 scattering

3He 𝑝, 𝑛 𝑝𝑝𝑝 𝜃𝑛 = 0° 𝑇𝑝 = 346 MeV
𝑑𝜎

𝑑𝜔𝑑Ω
0° , 𝐷𝑁𝑁 0° , 𝐷𝐿𝐿 0°

𝐷𝐿𝐿 0° ?

𝜔0 = 16 ± 1 MeV Γ = 11 ± 3 MeV



• Spin-isospin response function for the transition process: 3He → 3𝑝

𝑅𝐶 𝐸 , 𝑅𝐿 𝐸 , 𝑅𝑇 𝐸

• ȁ ۧΦ𝑏 ∶ 3He wave function

𝑅𝐶 𝐸 = න𝑑𝐸′෍

𝑓

Ψ𝑓 𝐸′ σ𝑖 𝑒
𝑖𝑄∙ Ԧ𝑟𝑖𝜏𝑖

+ Φ𝑏

2

𝛿 𝐸 − 𝐸′

𝑅𝐿 𝐸 = න𝑑𝐸′෍

𝑓

Ψ𝑓 𝐸′ σ𝑖 𝑒
𝑖𝑞∙ Ԧ𝑟𝑖 ෠𝑄 ∙ Ԧ𝜎𝑖 𝜏𝑖

+ Φ𝑏

2
𝛿 𝐸 − 𝐸′

𝑅𝑇 𝐸 = න𝑑𝐸′෍

𝑓

Ψ𝑓 𝐸′ σ𝑖 𝑒
𝑖𝑞∙ Ԧ𝑟𝑖 ෠𝑄 × Ԧ𝜎𝑖 𝜏𝑖

+ Φ𝑏

2
𝛿 𝐸 − 𝐸′

• Observables

𝜎 ∝ 𝑡𝑐 𝑄 2𝑅𝐶 + 𝑡𝐿 𝑄 2𝑅𝐿 + 2 𝑡𝑇 𝑄 2𝑅𝑇

𝐷𝐿𝐿 =
𝑡𝑐 𝑄 2𝑅𝐶 + 𝑡𝐿 𝑄 2𝑅𝐿 − 2 𝑡𝑇 𝑄 2𝑅𝑇
𝑡𝑐 𝑄 2𝑅𝐶 + 𝑡𝐿 𝑄 2𝑅𝐿 + 2 𝑡𝑇 𝑄 2𝑅𝑇

𝐷𝑇𝑇 =
𝑡𝑐 𝑄 2𝑅𝐶 − 𝑡𝐿 𝑄 2𝑅𝐿

𝑡𝑐 𝑄 2𝑅𝐶 + 𝑡𝐿 𝑄 2𝑅𝐿 + 2 𝑡𝑇 𝑄 2𝑅𝑇

Response functions

39



3He Ԧ𝑝, 𝑛 𝑝𝑝𝑝 𝑇𝑝 = 346MeV 𝜃𝑛 = 0°
NN-potentials: AV18, AV14, AV8’, dTRS

Momentum transfer 𝑄~10 − 50 MeV/c

Scattering amplitude of 𝑝𝑛 → 𝑛𝑝 [SAID,  NN-online]

𝑡 𝑄 = 𝑡𝑐 𝑄 + 𝑡𝐿 𝑄 ෠𝑄 ∙ Ԧ𝜎0 ෠𝑄 ∙ Ԧ𝜎𝑖 + 𝑡𝑇 𝑄 ෠𝑄 × Ԧ𝜎0 ෠𝑄 × Ԧ𝜎𝑖

NN-amplitude online database

SAID Program, 

http://gwdac.phys.gwu.edu/

NN-OnLine

http://nn-online.org/



3He 𝑝, 𝑛 𝑝𝑝𝑝 𝑇𝑝 = 346MeV 𝜃𝑛 = 0°

Only 2NF vs. 2NF+3NF（𝑾𝟏 = −𝟑𝟔 MeV）
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Three-body potential

𝑊 𝑇 = ෍

𝑛=1

2

𝑊𝑛𝑒
− 𝑟12

2 +𝑟23
2 +𝑟31

2 /𝑏𝑛
2 ෠𝑃 𝑇

Required value of 𝑊1 for 4𝑛 0+ state to bind:

𝑊1 = −36.14 MeV



6. Summary

• Three different extrapolating methods from 3𝑛 bound state energies to 
continuum states:

(i) to enhance component of the 𝑛𝑛 potential  [No 3n resonance state]
(ii) to introduce a three-body force [No 3n resonance state]
(iii) to add an external attractive trapping potential [3n resonance state]

• This discrepancy occurs due to the longer range trapping potential, 
which destroys the potential barrier. 

• This defect occurs in general, and the trapping method should be used 
carefully in studies of resonance states of few- and many-body systems.

• Precise calculations for reactions to study 3n or 3p systems (e.g,. 
3He Ԧ𝑝, 𝑛 𝑝𝑝𝑝) are now available.
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