Particle identification of projectilelike residues

FIG. 1. Particle identification of projectilelike residues. Particle's velocity (ψ) is deduced from TOF. Combining $B\rho$ and velocity allows to determine particle's mass-to-charge ratio A/Q. Z_{eff} is the deduced effective atomic number with AE and velocity using the Bethe-Bloch formula. The energy deposit of a charged particle in a material is related to its velocity, charge, and mass, as shown in the $\Delta E - \psi$ spectra with (w) the A/Q selections from 1.59 to 1.66 (b) and from 1.81 to 1.93 (c). Black contours in (b) and (c) select ¹³O and ¹³N, respectively.

¹³*O*: A/Q = 1.625, ¹⁴*O* :A/Q = 1.75. TOF \rightarrow *v*; $B\rho \rightarrow \frac{A}{Q}$; $\Delta E, v \rightarrow Z_{eff}$ Z_{eff} : the deduced effective atomic number. (a):Tails of ¹⁴*O* and ¹³*O* extending to smaller Z_{eff} region, since:

- ¹⁴*O*: unreacted projectiles interacting in the hodoscope
- ^{13}O : low-energy ^{13}O stopped in the hodoscope.

(b): most ^{13}O stopped in the hodoscope, ΔE proportional to velocity.

(c): most 13N punched through the hodoscope, ΔE antiproportional to velocity.

Experimental and theoretical cross sections for one-nucleon removal from $^{\rm 14}O$

TABLE I. Experimental (σ_{exp}) and theoretical (σ_{th}) cross sections for one-nucleon removal from ¹⁴O at 94 MeV/nucleon. SF represents the spectroscopic factor from shell-model calculations (see SM [58]). The reduction factors $R_s = \sigma_{exp}/\sigma_{th}$ are also given.

Residue	J^{π}	$\sigma_{\rm exp}$ (mb)	SF	Theory	$\sigma_{\rm sp}$ (mb)	$\sigma_{\rm th}~({\rm mb})$	<i>R</i> _s
¹³ N _{g.s.}	1/2-	10.7(16)	1.58	DWIA	5.2	8.8	1.22(18)
				Inelastic Sum		9 17.8	0.60(9)
				QTC Inelastic	7.0	11.9	0.90(13)
				Sum		20.9	0.51(8)
¹³ O _{g.s.}	3/2-	16.7(24)	3.42	DWIA Transfer	6.3 3	23.2 11	0.72(10)
				Sum		34.2	0.49(7)
				QTC w/o transfer	10.2	37.6	0.44(6)
				QTC	13.5	49.7	0.34(5)

2/7

Parallel momentum distributions of ^{13}N and ^{13}O

 ${}^{14}O(p,2p){}^{13}N$ and ${}^{14}O(p,pn){}^{13}O$

· Comparison of DWIA and QTC calculation.

• Key difference is how they handle three body final state:

 \cdot DWIA: product of the p-residue and N-residue states.

 \cdot QTC: expands in terms of p - Nstates, include deuteron ground state for 1n removal.

Parallel momentum distributions of ^{13}N and ^{13}O

Blue solid line: distribution of the unreacted $^{14}O.$ Shift by -200 MeV/c , broadened of the momentum.

Symmetrical properties: (a)(b)

(loosely bound) 1p removal: close to symmetric.

(c)(d)

(deeply bound) 1n removal:

low-momentum tail and high-momentum sharp edge.

Parallel momentum distributions of ${}^{13}N$ and ${}^{13}O$

(a)(b) 1p removal:

 \cdot Considered the (p, p') inelastic excitation of ¹⁴O to its low-lying excited states, emit one proton to get ¹³N.

 \cdot Large contribution of inelastic scattering: 51% with DWIA, 43% with QTC.

 \cdot If ignore inelastic scattering: R_s is around unity, equivalent to eikonal model.

• Use multiparticle-multihole configurations to describe low-lying excited states.

 \cdot Beyond the (p,pN) and the eikonal models, which assume the projectile is a single-particle state plus an inert core.

Parallel momentum distributions of ^{13}N and ^{13}O

(c)(d) 1n removal:

• Perform QTC with outgoing channel coupled only to deuteron ground state: equivalent to DWBA.

 \cdot QTC σ_{sp} without the (p,d) transfer is still larger than the DWIA result.

Symmetrical properties:

 \cdot Low-momentum tail is caused by the attractive potential between the outgoing nucleons and $^{13}O.$

• Due to the two-body kinematics of the transfer reaction, transfer reaction creates a sharp high-momentum edge, which is inaccessible to knockout.

 \cdot QTC reproduces better the sharp high-momentum side ,since it treats (p, d)transfer consistently with(p, pn).

R_s as a function of ΔS

FIG. 3. R_s as a function of ΔS from the present work (blue dots and black squares) compared to the trend extracted from Be or C induced nucleon-removal cross sections analyzed with the eikonal model [19–21] (gray shaded region). The square brackets indicate the total systematic uncertainties. Red solid and black dashed lines are shown to guide the eyes.

 \cdot Eikonal model: gray shaded area. Slope is -1.6 × 10⁻² MeV⁻¹ for light-ion induced nucleon removal.

• Analyses of low-energy one-nucleon transfer and high energy quasifree scattering data: slope is $(10^{-3} - 10^{-5})$ MeV⁻¹ • Present work: DWIA and QTC with inelastic and transfer: R_s have a weak ΔS dependence; the slope is -3.0(5)(5) × 10⁻³ MeV⁻¹ and -4.6(4)(7) × 10⁻³ MeV⁻¹ respectively.

• Neglect inelastic and transfer: slopes are 3–5 times larger.