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• H, 4He most abundant (~75%, ~25%)

• « Gap » between A=4 and A=12: no stable element with A=5 and 8

• Even-odd effects: nuclei with A even are more bound

• Iron peak (very stable)

Goal of nuclear astrophysics: understand the abundances of the elements

1. Introduction
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2. Reactions in astrophysics: general properties
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Types of reactions: general definitions valid for all models

2. Reactions in astrophysics: general properties

Type Example Origin

Transfer 3He(3He,2p)a Strong

Radiative capture 2H(p,g)3He Electromagnetic

Weak capture p+p d+ e+ + n Weak

cross section
decreases
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• Transfer: A+B  C+D (st, strong interaction, example: 3He(d,p)4He)

𝜎𝑡,𝑐→𝑐′ (𝐸) =
𝜋

𝑘2
෍

𝐽𝜋

2𝐽 + 1

2𝐼1 + 1 2𝐼2 + 1
𝑈
𝑐𝑐′
𝐽𝜋

𝐸
2

𝑈
𝑐𝑐′
𝐽𝜋

𝐸 =collision matrix (obtained from scattering theory  various models)

𝑐, 𝑐’ =entrance and exit channels

Transfer reaction:
Nucleons are transfered

Scattering energy 𝐸

A+B threshold, ex: 3He+d

C+D threshold, ex: 4He+p

Compound nucleus, ex: 5Li

2. Reactions in astrophysics: general properties



• Radiative capture : A+B  C+g (sC, electromagnetic interaction, example: 12C(p,g)13N) 

𝜎𝐶
𝐽𝑓𝜋𝑓 𝐸 ∼෍

𝜆

෍

𝐽𝑖𝜋𝑖

𝑘𝛾
2𝜆+1 < Ψ𝐽𝑓𝜋𝑓‖ℳ𝜆‖Ψ

𝐽𝑖𝜋𝑖 𝐸
2

𝐽𝑓𝜋𝑓=final state of the compound nucleus C

Ψ𝐽𝑖𝜋𝑖 𝐸 =initial scattering state of the system (A+B)

ℳ𝜆𝜇=electromagnetic operator (electric or magnetic): ℳ𝜆𝜇 ∼ 𝑒 𝑟𝜆𝑌𝜆
𝜇
(Ω𝑟)

Capture reaction:
A photon is emitted

g
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Long wavelength approximation:
Wave number 𝑘𝛾 = 𝐸𝛾/ℏ𝑐 , wavelength: 𝜆𝛾 = 2𝜋/𝑘𝛾
Typical value: 𝐸𝛾 = 1𝑀𝑒𝑉, 𝜆𝛾 ≈ 1200 fm >> typical dimensions of the system (R)

 𝑘𝛾𝑅 ≪ 1= Long wavelength approximation

2. Reactions in astrophysics: general properties
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initial state 𝐸>0 , contains all 𝐽𝑖𝜋𝑖, 

final states 𝐸𝑓 <0, specific 𝐽𝑓𝜋𝑓

𝜎𝐶
𝐽𝑓𝜋𝑓 𝐸 ∼෍

𝐽𝑖𝜋𝑖

෍

𝜆

𝑘𝛾
2𝜆+1 < Ψ𝐽𝑓𝜋𝑓 ℳ𝜆 Ψ𝐽𝑖𝜋𝑖 𝐸 >

2

• 𝑘𝛾 = 𝐸 − 𝐸𝑓 /ℏ𝑐 = photon wave number

• In practice

o Summation over 𝜆 limited to 1 term (often E1, or E2/M1 if E1 is forbidden)

𝐸2

𝐸1
∼ 𝑘𝛾𝑅 ≪ 1 (from the long wavelength approximation)

o Summation over 𝐽𝑖𝜋𝑖 limited by selection rules

𝐽𝑖 − 𝐽𝑓 ≤ 𝜆 ≤ 𝐽𝑖 + 𝐽𝑓

𝜋𝑖𝜋𝑓 = −1 𝜆 for electric, 𝜋𝑖𝜋𝑓 = −1 𝜆+1 for magnetic

A+B threshold, ex: 12C+p

2. Reactions in astrophysics: general properties



8

• Weak capture : tiny cross section  no measurement (only calc.)

𝜎𝑊
𝐽𝑓𝜋𝑓 𝐸 ∼෍

𝐽𝑖𝜋𝑖

< Ψ𝐽𝑓𝜋𝑓 𝑂𝛽 Ψ𝐽𝑖𝜋𝑖 𝐸 >
2

o Calculations similar to radiative capture
o 𝑂𝛽= Fermi (σ𝑖 𝑡𝑖±) and Gamow-Teller (σ𝑖 𝑡𝑖±𝜎𝑖) operators

o Examples: p+p d+n+e+: first reaction in H burning (pp chain)
3He+p 4He+n+e+: produces high-energy neutrinos

• Fusion: similar to transfer, but with many output channels
 statistical treatment
 optical potentials
Examples: 12C+12C, 16O+16O, etc.

2. Reactions in astrophysics: general properties



General properties

Reaction threshold

Scattering energy E: wave function Ψ𝑖 𝐸
common to all processes

E

• Cross sections dominated by Coulomb effects
Sommerfeld parameter 𝜂 = 𝑍1𝑍2𝑒

2/ℏ𝑣

• Coulomb functions at low energies
𝐹ℓ 𝜂, 𝑥 → exp −𝜋𝜂 ℱℓ 𝑥 ,
𝐺ℓ 𝜂, 𝑥 → exp 𝜋𝜂 𝒢ℓ 𝑥 ,

• Coulomb effect: strong 𝐸 dependence : exp −2𝜋𝜂
neutrons: 𝜎 𝐸 ∼ 1/𝑣

• Strong ℓ dependence

Centrifugal term: ∼
ℏ2

2𝜇

ℓ ℓ+1

𝑟2

 stronger for nucleons (𝜇 ≈ 1) than for a (𝜇 ≈ 4)
9

V(r)

r

E astro

ℓ > 0

ℓ = 0

2. Reactions in astrophysics: general properties
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General properties: specificities of the entrance channel common to all reactions

• All cross sections (capture, transfer) involve a summation over ℓ: 𝜎 𝐸 = σℓ𝜎ℓ(𝐸)

• The partial cross sections 𝜎ℓ(𝐸) are proportional to the penetration factor

𝑃ℓ 𝐸 =
𝑘𝑎

𝐹ℓ 𝑘𝑎 2+𝐺ℓ 𝑘𝑎 2 (𝑎 =typical radius)

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 2 4

ℓ=4

ℓ=0

ℓ=2

d+d

𝐸 (MeV)

𝑃
ℓ

Consequences
• ℓ > 0 are often negligible at low energies
• ℓ = ℓ𝑚𝑖𝑛 is dominant (often ℓ𝑚𝑖𝑛 = 0)
• For ℓ = 0, 𝑃0 𝐸 ∼ exp −2𝜋𝜂

Astrophysical S factor: 𝑆(𝐸) = 𝜎(𝐸)𝐸exp(2𝜋𝜂) (Units: EL2: MeV-barn)

• removes the coulomb dependence only nuclear effects

• weakly depends on energy𝜎 𝐸 ≈ 𝑆0 exp −2𝜋𝜂 /𝐸 (any reaction at low E)

2. Reactions in astrophysics: general properties
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Example 1: 3He(a,g)7Be reaction

• Cross section s(E) Strongly
depends on energy

• Logarithmic scale

S factor
• Coulomb effects removed
• Weak energy dependence
• Linear scale

2. Reactions in astrophysics: general properties
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Example 2: 12C(p,g)13N reaction

• Resonance 1/2+: ℓ = 0
• Resonances 3/2- , 5/2+ ℓ = 1,2 negligible

Note: BW is an approximation
• Neglects background, external capture
• Assumes an isolated resonance
• Is more accurate near the resonance energy

2. Reactions in astrophysics: general properties



• Nucleosynthesis:

• Primordial (Bigbang): 3 first minutes of the Universe

• Stellar: star evolution, energy production

• Input required: reaction rate <sv>

• strongly depend on temperatures

• given by the low-energy part of the cross section s(E) (Gamow window)

• Astrophysical energies: much lower than the Coulomb barrier
 Coulomb effects are dominant
 Very small cross sections 13

V(r)

r
E astro

Gamow peak :
E0 = 0.122 m1/3 (Z1Z2T9)2/3 MeV: 
DE0 = 0.237 m1/6 (Z1Z2)1/3 T9

5/6 MeV
Example: 12C(a,g)16O at T9=0.2: E0=300 keV

2. Reactions in astrophysics: general properties
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General problems in nuclear astrophysics

• Low energies very low cross sections (Coulomb barrier)

• For heavy nuclei: high level densitiesmany resonances must be known

• Need for radioactive beams

• No systematics (many different types of reactions)

• transfer, capture

• resonant, non-resonant

• low or high level densities

 in most cases a theoretical support is necessary

• data extrapolation (example: R-matrix method)
Available cross sections are parametrized, and extrapolated down to stellar
energies

• determination of cross sections 
The cross sections are determined from the wave functions of the system
No need for experimental data (in principle!)
Examples: potential model, microscopic models (low level densities)

shell model (resonance properties in for high level densities)

2. Reactions in astrophysics: general properties
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3. Reaction models
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CALCULATIONS

Non-
microscopic

Potential
model 

(capture)

DWBA 
(transfer)

Microscopic

Cluster 
models

Ab initio
models

FITS

R-matrix

Applications: standard techniques applied to nucleus-nucleus scattering
Theoretical point of view: compute the cross sections
Experimental point of view: fit the data and extrapolate them to low energies

3. Reaction models
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Potential model 𝐻 = 𝑇𝑟 + 𝑉 𝑟
Ψ = 𝑔𝐿(𝒓)

V(r)=nucleus-nucleus potential

r

r
Microscopic cluster model 𝐻 = σ𝑖 𝑇𝑖 + σ𝑗>𝑖 𝑉𝑖𝑗
RGM, GCM Ψ = 𝒜𝜙1𝜙2𝑔(𝒓)

𝑉𝑖𝑗=effective nucleon-nucleon interaction

𝜙1𝜙2=shell-model wave functions for clusters 1 and 2  not solution of the Hamiltonian

Microscopic « ab intio » models 𝐻 = σ𝑖 𝑇𝑖 + σ𝑗>𝑖 𝑉𝑖𝑗 +⋯

AMD, FMD, NCSM

𝑉𝑖𝑗=realistic nucleon-nucleon interaction

3. Reaction models



18

Potential model

Internal structure is neglected

Advantage:
 Simple

Limitations:
 Not applicable to transfer reactions
 Choice of the potential?
 Not applicable if reaction channels are open

r

15N+p threshold: 15N(p,a)12C is open
 PM not applicable to 15N(p,g)16O

12C+a threshold

3. Reaction models
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 Resonances may not be described by the PM
example: 12C(a,g)16O  E2

0.10

1.00

10.00

100.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

3. Reaction models

22
+ resonance

with a 12C(2+)+a

structure

 2 resonances in the same partial wave
12C(a,g)16O  E1: two 1- resonances

 Low predictive power
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4. Microscopic models



Microscopic models
• Pauli principle taken into account
• Depend on a nucleon-nucleon (NN) interaction more predictive power

𝐻0 𝑟1, … 𝑟𝐴 =෍

𝑖

𝑇𝑖 +෍

𝑖𝑗

𝑉𝑖𝑗

• Two approaches: « ab initio », cluster models

« Ab initio » (No-
cluster approximation)

• Try to find an exact solution of the (A-body) Schrödinger 
equation

• Use realistic NN interactions (fitted on NN properties)

• In general:
• 𝐴 ≤ 12
• Scattering states difficult/impossible to obtain
• Not well adapted to halo structure, resonant states

21

4. Microscopic models
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Example 1: T. Neff, Phys. Rev. Lett. 106, 042502

3He(a,g)7Be
• Many experiment, many calculations
• First RGM calculation (1981)

Liu et al.
• Low energies: external capture
• ERNA data (2007): different for E>1.5 MeV

3H(a,g)7Li
• Mirror reaction
• Overestimates recent data

4. Microscopic models



Example 2: d+d systems 2H(d,g)4He, 2H(d,p)3H, 2H(d,n)3He
two physics issues

• Analysis of the d+d S factors (Big-Bang nucleosynthesis)
• Role of the tensor force in 2H(d,g)4He

2H(d,g)4He S factor
• Ground state of 4He=0+

• E1 forbidden main multipole is E2  2+ to 0+ transition d wave as initial state
• Experiment shows a plateau below 0.1 MeV: typical of an s wave

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

10 100 1000 10000

S 
fa

ct
o

r 
(k

eV
-b

)

Ecm (keV)

2H(d,g)4He
ds

sd

E2 matrix element< 𝜳𝟎+ ∣ 𝑬𝟐 ∣ 𝜳𝟐+ >
≈< 0+, 0 ∣ E2 ∣ 2+, 2 >: ds, dominant E>100 keV
+< 0+, 2 ∣ E2 ∣ 2+, 0 >: sd, tensor (E<100 keV)

 direct effect of the tensor force
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4. Microscopic models



Collaboration Niigata (K. Arai, S. Aoyama, Y. Suzuki)-Brussels (D. Baye, P.D.)
K. Arai et al., Phys. Rev. Lett. 107 (2011) 132502 

3 nucleon-nucleon interactions:
• Realistic: Argonne AV8’, G3RS
• Effective: Minnesota MN

• No parameter
• MN does not reproduce the 

plateau (no tensor force)
• D wave component in 4He:

13.8% (AV8’)
11.2% (G3RS)
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4. Microscopic models



Transfer reactions 2H(d,p)3H, 2H(d,n)3He

25

4. Microscopic models



Cluster approximation • Wave function defined by
Ψ = 𝒜Φ1Φ2𝑔(𝑟) (Φ1, Φ2=internal wave functions (shell-model))

=Resonating Group Method (RGM)

• Effective NN interactions (Minnesota, Volkov)

• Extensions to 3 clusters, 4 clusters, etc.

• Core excitations can be easily included

• Scattering states possible

• Calculations easier than in ab initio theories
Many applications (up to Ne isotopes) in spectroscopy and 
scattering

• Textbook example: a+a

• First application in astrophysics: 3He(a,g)7Be

26

4. Microscopic models



27

Application to 7Be(p,g)8B

0
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7
Be(p,g)

8
B

MN

V2
DB94

experiment theory

m (2+) (mN) 1.03 1.52

Q(2+) (e.fm2) 6.83 ± 0.21 6.0

B(M1,1+→2+)

(W.u.)

5.1 ± 2.5 3.8

P.D., Phys. Rev. C70, 065802 (2004)

• 2 generator coordinates
• 7Be (3/2-,1/2-,5/2-,7/2-)+p
• Double angular-momentum projection

1) 7Be
2) 7Be+p

4. Microscopic models
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5. The R-matrix method



• Introduced by Wigner (1937) to parametrize resonances (nuclear physics)
In nuclear astrophysics: used to fit data

• Provides scattering properties at all energies (not only at resonances)

• Based on the existence of 2 regions (radius a):
• Internal: coulomb+nuclear
• external: coulomb

2. MODELS: the R-matrix method

29

Internal region

16O

Entrance channel

12C+a

Exit channels

12C(2+)+a

15N+p, 15O+n

12C+a

Coulomb
Nuclear+Coulomb:

R-matrix parametersCoulomb

5. The R-matrix method
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Main Goal: fit of experimental data
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18Ne+p elastic scattering 
 resonance properties

Nuclear astrophysics: 12C(a,g)16O (E2)
Extrapolation to low energies

5. The R-matrix method



• Internal region: The R matrix is given by a set of resonance parameters (=poles) 𝐸𝑖 , 𝛾𝑖
2

𝑅 𝐸 = σ𝑖
𝛾𝑖
2

𝐸𝑖−𝐸
= 𝑎

Ψ′ 𝑎

Ψ 𝑎

• External region: Coulomb behaviour of the wave function
Ψ 𝑟 = 𝐼 𝑟 − 𝑈𝑂 𝑟

the collision matrix U is deduced from the R-matrix (repeated for each spin/parity 𝐽𝜋)

• Two types of applications:

• phenomenological R matrix: 𝛾𝑖
2 and 𝐸𝑖 are fitted to the data (astrophysics)

• calculable R matrix: 𝛾𝑖
2 and 𝐸𝑖 are computed from basis functions (scattering theory)

• R-matrix radius 𝑎 is not a parameter: the cross sections must be insensitive to 𝑎

• Can be extended to multichannel calculations (transfer), capture, etc.

• Well adapted to nuclear astrophysics: low energies, low level densities

31

i=1, 𝐸1, 𝛾1
2

i=3, 𝐸3, 𝛾3
2

i=2, 𝐸2, 𝛾2
2

5. The R-matrix method
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Different processes with common parameters constraints

• Phase shifts related to σ𝑖
𝛾𝑖
2

𝐸𝑖−𝐸

• Capture cross section related to σ𝑖
𝛾𝑖√Γ𝛾,𝑖

𝐸𝑖−𝐸

• Transfer cross section related to σ𝑖
𝛾1𝑖𝛾2𝑖

𝐸𝑖−𝐸

• Beta decay to the continuum related to σ𝑖
𝛾𝑖𝐴𝑖

𝐸𝑖−𝐸

𝐸𝑖 , 𝛾𝑖: energies and reduced widths: common to all processes
Γ𝛾,𝑖 , 𝛾2𝑖 , 𝐴𝑖: specific to the individual processes

5. The R-matrix method



Example: simultaneous fit of

– 12C+a phase shift

– 12C(a,g)16O S-factor (E1)

– 16N b-decay 

(Azuma et al, Phys. Rev. C50 (1994) 1194)

parameters of the 1-
1 and 1-

2 states (+background):

– 12C+a: El, gl

– 12C(a,g)16O : El, gl, Gg,l (radiative width)

– 16N b decay : El, gl, Al (b probabilities)

 Constraints on common parameters El, gl

5. The R-matrix method



16N b decay

12C(a,g)16O

1- phase 

shift

3- phase 

shift

5. The R-matrix method



S(300 keV): extrapolations for E1

35

16N data available

5. The R-matrix method
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Review paper: R. deBoer et al., Rev. Mod. Phys. 89 (2017) 035007
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6. Conclusion



Needs for nuclear astrophysics:

• low energy cross sections

• resonance parameters

Theory: various techniques

• fitting procedures (R matrix) extrapolation: importance of external constraints

• non-microscopic models: potential, DWBA, etc.

• microscopic models:

 cluster: developed since 1960’s, applied to NA since 1980’s

 ab initio: problems with scattering states, resonances limited at the moment

• Indirect methods (resonance and bound-state) properties: many experiments

• (Some) current challenges: triple a process, 12C(a,g)16O, 12C+12C, etc.
s-process: many reactions
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6. Conclusion


