Group Meeting

Scattering of Two Spinless Particles

jizheng,Bo

March 5, 2023

2-particle wave functions

- $\psi\left(x_{1}, x_{2}\right),|\psi\rangle=|\phi\rangle \otimes|\chi\rangle$
- $|\psi\rangle$: a vector in the 2 -particle Hilbert space \mathscr{H}
- $|\phi\rangle,|\chi\rangle$: a vector in 1-particle space \mathscr{H}_{1} and \mathscr{H}_{2}

scalar product \& tensor product

- if $|n\rangle \&|m\rangle$ are orthogonal bases of the 1-particle spaces $\mathscr{H}_{1} \& \mathscr{H}_{2}$, then the products

$$
|n\rangle \otimes|m\rangle(n, m=1,2,3 \cdots)
$$

\rightarrow an orthogonal basis of the 2-particle space \mathscr{H}

- in words, $\mathscr{H}=\mathscr{H}_{1} \otimes \mathscr{H}_{2}$

scalar product \& tensor product

- the scalar products satisfy :

$$
\left(\left\langle\phi^{\prime}\right| \otimes\left\langle\chi^{\prime}\right|\right)(|\phi\rangle \otimes|\chi\rangle)=\left\langle\phi^{\prime} \mid \phi\right\rangle\left\langle\chi^{\prime} \mid \chi\right\rangle
$$

- e.g. 1 particle with the degrees of freedom of spin s concerned

$$
\mathscr{H}=\mathscr{H}_{\text {space }} \otimes \mathscr{H}_{\text {spin }}
$$

where $\mathscr{H}_{\text {space }}: \mathscr{L}^{2}\left(\mathbb{R}^{3}\right), \mathscr{H}_{\text {spin }}:(2 s+1)$-dimensional spin space, forming $(2 s+1)$-component spinor wave functions

2 spinless particles

- regard $\mathscr{H}=\mathscr{H}_{1} \otimes \mathscr{H}_{2}$ as a factoring of \mathscr{H}
- so the factoring of the space of the 2-particle wf: $\mathscr{H}=\mathscr{H}_{c m} \otimes \mathscr{H}_{\text {rel }}$

product operators

- Def: if A and B acting on \mathscr{H}_{1} and \mathscr{H}_{2} respectively, operator $A \otimes B$ acting on \mathscr{H} is defined by the relation

$$
(A \otimes B)(|\phi\rangle \otimes|\chi\rangle)=A|\phi\rangle \otimes B|\chi\rangle
$$

which is the same as $(A \otimes 1)(1 \otimes B)$

the case of 2 particles

- $H=\frac{P_{1}^{2}}{2 m_{1}}+\frac{P_{2}^{2}}{2 m_{2}}+V=H^{0}+V, H=\frac{\bar{P}^{2}}{2 M}+\left[\frac{P^{2}}{2 m}+V(x)\right]=H_{c m}+H_{r e l}$
- where relative quantities: P, m, one of which acts only on $\mathscr{H}_{c m}$, the other on $\mathscr{H}_{\text {rel }}$

evolution operator

- $U(t)=e^{-i H t}=e^{-i\left(H_{c m}+H_{r e l}\right) t}=e^{-i H_{c m} t} \otimes e^{-i H_{r e l} t}$: the motions of CM \& the rel are independent
- in the same way, the free evolution operator: $U^{0}(t)=e^{-i H^{0} t}=e^{-i H_{c m} t} \otimes e^{-i H_{r e l} t}$

the 2-particle S operator

- use the def $S=\Omega_{-}^{\dagger} \Omega_{+} \& \Omega_{ \pm}=\lim _{t \rightarrow \mp \infty} U(t)^{\dagger} U^{0}(t)$
- then $U(t)^{\dagger} U^{0}(t)=1_{c m} \otimes\left(e^{i H_{r e l} t} e^{-i H_{r e l}^{0} t}\right)$
- the same mathematical structure with that of 1-particle system with Hamiltonian $H_{r e l}=\frac{P^{2}}{2 m}+V(x)=H_{r e l}^{0}+V(x)$: a single particle in a fixed potential

the 2 -particle S operator

- 2-particle moller operators acting on the 2-particle space $\mathscr{H}=\mathscr{L}^{2}\left(\mathbb{R}^{6}\right)$ have the simple form :

$$
\Omega_{ \pm}=1_{c m} \otimes \Omega_{ \pm}
$$

where $\Omega_{ \pm}=\lim _{t \rightarrow \mp \infty} e^{i H_{r e l} t} e^{-i H_{\text {rel }}^{0} t}$

- then $\boldsymbol{S}=\boldsymbol{\Omega}_{-}^{\dagger} \boldsymbol{\Omega}_{+}=1_{c m} \otimes S$, where $S=\Omega_{-}^{\dagger} \Omega_{+}$acts on $\mathscr{H}_{\text {rel }},\left|\psi_{\text {out }}\right\rangle=\boldsymbol{S}\left|\psi_{\text {in }}\right\rangle$

conservation of energy-momentum

- $[\mathbf{S}, \bar{P}]=0$
- the matrix elements $\left\langle p_{1}^{\prime}, p_{2}^{\prime}\right| \boldsymbol{S}\left|p_{1}, p_{2}\right\rangle$ contains the factors $\delta\left(E_{1}^{\prime}+E_{2}^{\prime}-E_{1}-E_{2}\right) \delta_{3}\left(p_{1}^{\prime}+p_{2}^{\prime}-p_{1}-p_{2}\right)$

conservation of energy-momentum

- $\left|p_{1}, p_{2}\right\rangle=|\bar{p}, p\rangle=|\bar{p}\rangle \otimes|p\rangle$
- so $\left\langle p_{1}^{\prime}, p_{2}^{\prime}\right| \boldsymbol{S}\left|p_{1}, p_{2}\right\rangle=\left\langle\bar{p}^{\prime}, p^{\prime}\right|\left(1_{c m} \otimes S\right)|\bar{p}, p\rangle=\delta_{3}\left(\bar{p}^{\prime}-\bar{p}\right)\left\langle p^{\prime}\right| S|p\rangle$
- by the familar decomposition $\left\langle p^{\prime}\right| S|p\rangle=\delta_{3}\left(p^{\prime}-p\right)-2 \pi i \delta\left(E_{p^{\prime}}-E_{p}\right) t\left(p^{\prime} \leftarrow p\right)$
- combining the 2 eq , we get

$$
\begin{aligned}
\left\langle p_{1}^{\prime}, p_{2}^{\prime}\right| \boldsymbol{S}\left|p_{1}, p_{2}\right\rangle= & \delta_{3}\left(p_{1}^{\prime}-p_{1}\right) \delta_{3}\left(p_{2}^{\prime}-p_{2}\right) \\
& -2 \pi i \delta\left(\sum E_{i}^{\prime}-\sum E_{i}\right) \\
& \times \delta_{3}\left(\sum p_{i}^{\prime}-\sum p_{i}\right) t\left(p^{\prime} \leftarrow p\right)
\end{aligned}
$$

- similarly, $f\left(p^{\prime} \leftarrow p\right)=-(2 \pi)^{2} m t\left(p^{\prime} \leftarrow p\right)$

Thank you for your listening!

