CDCC model space

$$[E - K - V(r) - U(r_p) - U(r_n)]\psi = 0$$

The CDCC model space *P*:

selects low angular momenta l associated with $r = r_p - r_n$, up to a maximum l_m .

$$1 - P = Q$$

Principal point:

 \cdot Asymptotic two-body channels are located uniquely either in component $P\psi$ or in $Q\psi$

 \cdot Asymptotic boundary conditions for each two-body channel are expressed in finite form in terms of the natural variables of its Faddeev component.

 $P\psi$: no asymptotic amplitudes in the two-body rearrangement channels. n-A bound-state channel:

 $P\left[\phi_n\left(r_n\right)\chi_p\left(r_p\right)\right] \to O\left(1/r_p^3\right)$

Natural variables: $r = r_p - r_n$, $R = (r_p + r_n)/2$.

 $Q\psi$: no asymptotic amplitude in the deuteron channel.

Natural variables: r_n , r_p .

$$(E - K - V - PU)P\psi = PUQ\psi,$$

$$(E - K - V - QU)Q\psi = QUP\psi.$$

Additional approximations: use eigenstates of $K_r + V(r)$ to expand.

Coupling potentials in these equations arise from PUP have long tails; depend somewhat on the method of discretization.

Term $PUQ\psi$ tends to be weak, especially for the smooth potentials U_p, U_n in current CDCC applications, because:

 \boldsymbol{U} has small matrix elements between significantly different l states

U only links $l \approx l'$ states in the P and Q spaces if $l \approx l' \approx l_m$, a fairly large angular momentum.

For such values of angular momenta centrifugal repulsion reduces the wave function at small radii; in general $PUQ\psi$ vanishes rapidly at large radii, giving an overall reduction.

 $(E - K - V - PUP)\psi^{\text{CDCC}} = 0$

Effects of the coupling term $PUQ\psi$

1. realistic nucleon optical potentials:

 U_p and U_n have absorptive imaginary parts;

rearrangement channels are "closed by absorption" and have no very-high-*l* components.

components of $Q\psi$ that are appreciable will be ones that can be reached directly from the deuteron channel or through a few steps of continuum-continuum coupling.

2. U_p and U_n are real:

can have open rearrangement channels.

recognize $PUQ\psi$ as a complicated long-ranged eff'ective potential in P space that takes account of the higher-angular-momentum states in Q space.

despite the coupling to Q space, ψ may still be a good approximation in a limited region $R < R_m.$

standard Faddeev differential equations for a deuteron-nucleus example:

$$(E - K - V)\psi_d = V(\psi_p + \psi_n),$$

$$(E - K - U_p)\psi_p = U_p(\psi_d + \psi_n),$$

$$(E - K - U_n)\psi_n = U_n(\psi_d + \psi_p),$$

Faddeev equations with distorting potentials:

$$(E - K - V)\psi_d = V(\psi_p + \psi_n),$$

$$(E - K - U_p)\psi_p = U_p(\psi_d + \psi_n),$$

$$(E - K - U_n)\psi_n = U_n(\psi_d + \psi_p),$$

Addition:

$$(E - K - U_p - U_n)\left(\hat{\psi}_p + \psi_n\right) = (U - PUP)\hat{\psi}_d$$

$$(E - K - U_p - U_n)\left(\hat{\psi}_p + \psi_n\right) = (U - PUP)\hat{\psi}_d$$

$$(E - K - U_p - U_n) \left(\hat{\psi}_p + \hat{\psi}_n \right) \approx QUP \hat{\psi}_a$$

1. solve the CDCC equation;

2.insert it as a zero-order approximation for $\hat{\psi_d}$ in belowing equation to produce $\hat{\psi_p} + \hat{\psi_n}$.

$$(E - K - U_p - U_n)\left(\hat{\psi}_p + \psi_n\right) = (U - PUP)\hat{\psi}_d$$

3.
insert $\hat{\psi_p} + \hat{\psi_n}$ to produce $\hat{\psi_d}$.

$$(E - K - V)\psi_d = V\left(\psi_p + \psi_n\right)$$

4.repeat 2 and 3.

separate $\hat{\psi_p} + \hat{\psi_n}$ into arrangement channels with bound n-A states and bound p-A states:

$$\begin{split} \left[E - K - U_p - P_p U_n P_p\right] \tilde{\psi}_p \\ &= \left[U_p - P_n U_p P_n\right] \tilde{\psi}_n + \left[U_p - P U_p P\right] \tilde{\psi}_d, \\ \left[E - K - U_n - P_n U_p P_n\right] \tilde{\psi}_n \\ &= \left[U_n - P_p U_n P_p\right] \tilde{\psi}_p + \left[U_n - P U_n P\right] \tilde{\psi}_d, \end{split}$$

1. solve the CDCC equation;

2.insert it as a zero-order approximation for $\hat{\psi}_d$ in (7') to produce $\hat{\psi}_p + \hat{\psi}_n$. 3.insert $\hat{\psi}_p + \hat{\psi}_n$ to produce $\hat{\psi}_d$. 4.repeat 2 and 3. Another way to solve

$$(E - K - U_p - U_n)\left(\hat{\psi}_p + \psi_n\right) = (U - PUP)\hat{\psi}_d$$

might be to expand in a truncated basis of homogeneous eigensolutions of the LHS of the equation.

choose the parameter l large enough so iteration is unnecessary.