CDCC model space

[E—-K—-V(r)=U(ry) —=U(r)]¥ =0
The CDCC model space P:

selects low angular momenta [ associated with r =, — r,,, up to @ maximum [,,,.

1-P=Q
Principal point:
- Asymptotic two-body channels are located uniquely either in component P or in Q)

- Asymptotic boundary conditions for each two-body channel are expressed in finite
form in terms of the natural variables of its Faddeev component.
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P : no asymptotic amplitudes in the two-body rearrangement channels.

n — A bound-state channel:

Pon (rn) xp (rp)] = O (T/T;)

Natural variables: r = r, — r,,, R = (1, + 1y,) /2.
Q) : no asymptotic amplitude in the deuteron channel.

Natural variables: r,,, 7.
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(E— K —V — PU)Py = PUQY,

(FE—K-V -QU)Qy =QUPy.

Additional approximations: use eigenstates of K, + V/(r) to expand.

Coupling potentials in these equations arise from PU P have long tails; depend
somewhat on the method of discretization.
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Term PUQq tends to be weak, especially for the smooth potentials U,, U,, in current
CDCC applications, because:

U has small matrix elements between significantly different [ states

U only links [ ~ [’ states in the P and @ spaces if | ~ I’ ~ [,,, a fairly large angular
momentum.

For such values of angular momenta centrifugal repulsion reduces the wave function at
small radii; in general PUQ vanishes rapidly at large radii, giving an overall reduction.

(E—- K-V — PUP}®PCC =0
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Effects of the coupling term PUQv

1. realistic nucleon optical potentials:
U, and U,, have absorptive imaginary parts;

rearrangement channels are "closed by absorption” and have no very-high-I
components.

components of Qv that are appreciable will be ones that can be reached directly from
the deuteron channel or through a few steps of continuum-continuum coupling.

2. U, and U, are real:
can have open rearrangement channels.

recognize PUQ+ as a complicated long-ranged eff’ective potential in P space that takes
account of the higher-angular-momentum states in Qspace.

despite the coupling to @ space, 1 may still be a good approximation in a limited region
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standard Faddeev differential equations for a deuteron-nucleus example:

(EfK—V)wd:V(l/}er?/Jn),
(E— K —Up)¢p =Up (Ya + ¢n),
(E—=K —Up)tn = Uy, (ha + ),

Faddeev equations with distorting potentials:

(BE—K—=V)pa=V (¥p+%n),
(E— K —Up)tp = Uy (Ya +tn),
(E =K —Up)tn = U, (ha + ),

Addition:
(B— K —Up = Uy) (Y + ) = (U — PUPYs
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(B =K Uy = Us) (4 +¥n) = (U = PUP)is

(E*K*Up*Un) (Q/AijrdA’n) zQUP'l/A)ul
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Iterative approach

1. solve the CDCC equation;

2.insert it as a zero-order approximation for ¢, in belowing equation to produce v, + ,,.

(B =K = Uy = Us) (9 + ) = (U = PUPYu
3.insert ¢, + ¢, to produce vg.

(E—K—=V)Ya =V (p+tn)

4.repeat 2 and 3.

8/10



Iterative approach

separate wAp + 1), into arrangement channels with bound n-A states and bound p-A
states: B
[E_K_Up_PpUan]wp

= [Up - PnUpPrJ ﬁn + [Up - PU[,P] 7;(1,
[EiK*UTL*PnUan]&n
= [Un — PoUnBy] J)p + [Un — PU,P] &d-,
1. solve the CDCC equation;

2.insert it as a zero-order approximation for ¢4 in (7') to produce ¢, + .
3.insert ¢, + v, to produce .

4.repeat 2 and 3.
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Iterative approach

Another way to solve

(E— K —U, - Uy) (z/SP + wn) — (U — PUP)q

might be to expand in a truncated basis of homogeneous eigensolutions of the LHS of
the equation.

choose the parameter | large enough so iteration is unnecessary.
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