
CDCC model space

[E −K − V (r)− U (rp)− U (rn)]ψ = 0

The CDCC model space P :

selects low angular momenta l associated with r = rp − rn, up to a maximum lm.

1− P = Q

Principal point:

· Asymptotic two-body channels are located uniquely either in component Pψ or in Qψ

· Asymptotic boundary conditions for each two-body channel are expressed in finite
form in terms of the natural variables of its Faddeev component.
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Pψ : no asymptotic amplitudes in the two-body rearrangement channels.

n−A bound-state channel:

P [ϕn (rn)χp (rp)] → O
(
1/r3p

)
Natural variables: r = rp − rn, R = (rp + rn)/2.

Qψ : no asymptotic amplitude in the deuteron channel.

Natural variables: rn, rp.
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(E −K − V − PU)Pψ = PUQψ,

(E −K − V −QU)Qψ = QUPψ.

Additional approximations: use eigenstates of Kr + V (r) to expand.

Coupling potentials in these equations arise fromPUP have long tails; depend
somewhat on the method of discretization.
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Term PUQψ tends to be weak, especially for the smooth potentials Up, Un in current
CDCC applications, because:

U has small matrix elements between significantly different l states

U only links l ≈ l′ states in the P and Q spaces if l ≈ l′ ≈ lm, a fairly large angular
momentum.

For such values of angular momenta centrifugal repulsion reduces the wave function at
small radii; in general PUQψ vanishes rapidly at large radii, giving an overall reduction.

(E −K − V − PUP )ψCDCC = 0
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Effects of the coupling term PUQψ

1. realistic nucleon optical potentials:

Up and Un have absorptive imaginary parts;

rearrangement channels are ”closed by absorption” and have no very-high-l
components.

components of Qψ that are appreciable will be ones that can be reached directly from
the deuteron channel or through a few steps of continuum-continuum coupling.

2. Up and Un are real:

can have open rearrangement channels.

recognize PUQψ as a complicated long-ranged eff’ective potential in P space that takes
account of the higher-angular-momentum states in Qspace.

despite the coupling to Q space, ψ may still be a good approximation in a limited region
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standard Faddeev differential equations for a deuteron-nucleus example:

(E −K − V )ψd = V (ψp + ψn) ,

(E −K − Up)ψp = Up (ψd + ψn) ,

(E −K − Un)ψn = Un (ψd + ψp) ,

Faddeev equations with distorting potentials:

(E −K − V )ψd = V (ψp + ψn) ,

(E −K − Up)ψp = Up (ψd + ψn) ,

(E −K − Un)ψn = Un (ψd + ψp) ,

Addition:
(E −K − Up − Un)

(
ψ̂p + ψn

)
= (U − PUP )ψ̂d
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(E −K − Up − Un)
(
ψ̂p + ψn

)
= (U − PUP )ψ̂d

(E −K − Up − Un)
(
ψ̂p + ψ̂n

)
≈ QUPψ̂d
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Iterative approach

1. solve the CDCC equation;

2.insert it as a zero-order approximation for ψ̂d in belowing equation to produce ψ̂p + ψ̂n.

(E −K − Up − Un)
(
ψ̂p + ψn

)
= (U − PUP )ψ̂d

3.insert ψ̂p + ψ̂n to produce ψ̂d.

(E −K − V )ψd = V (ψp + ψn)

4.repeat 2 and 3.
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Iterative approach

separate ψ̂p + ψ̂n into arrangement channels with bound n-A states and bound p-A
states:

[E −K − Up − PpUnPp] ψ̃p

= [Up − PnUpPn] ψ̃n + [Up − PUpP ] ψ̃d,

[E −K − Un − PnUpPn] ψ̃n

= [Un − PpUnPp] ψ̃p + [Un − PUnP ] ψ̃d,

1. solve the CDCC equation;

2.insert it as a zero-order approximation for ψ̂d in (7’) to produce ψ̂p + ψ̂n.

3.insert ψ̂p + ψ̂n to produce ψ̂d.

4.repeat 2 and 3.
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Iterative approach

Another way to solve

(E −K − Up − Un)
(
ψ̂p + ψn

)
= (U − PUP )ψ̂d

might be to expand in a truncated basis of homogeneous eigensolutions of the LHS of
the equation.

choose the parameter l large enough so iteration is unnecessary.
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