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Introduction

The basic element in quantum computation is the qubit, which is a
simply a two-level quantum system.

There are also extensions to systems with more than two levels, known
as qudits. But we will focus on qubits in these lectures.

In general, our qubit will be in a general superposition of the two states.

W=al0)+811)  Wh=alo|+s[]] =[5
With proper normalization we have

af* +18]* =1



Up to an overall complex phase, we can write

) = cos(6/2)|0) + e sin(6/2) |1)
0<O0<m 0<p<2n

This can be represented as a point on the Bloch sphere

Credit: Smite-Meister
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For a two-qubit system we have the four basis states

00) = 01) = 10) =

OO = O O
_ O O O

SO = O

o OO =

Any arbitrary state can be written as
1) = ago [00) + o1 [01) + a0 [10) + a1 [11)
with normalization

|OKOO‘2 + ‘0401|2 + |C¥10|2 + |0411‘2 =1

For the N-qubit system, any arbitrary state can be written as



) = Z Z Qiyiy |81 IN)

i1€{0,1} in€{0,1}

with normalization

Z Z |ai1---iN|2 =1

i1€{0,1} in€{0,1}



One-qubit gates

Since the evolution of quantum systems is unitary, all quantum gates are
unitary.

Identity gate 1

L10) =10), T|1) = [1)



NOT gate (= Pauli-X gate) X

If we view 0 and 1 as logical false and true, then the NOT gate
corresponds to a logical negation or bit flip that exchanges 0 and 1.

X |0) = [1), X[1) = |0)

x-[ )
Vo) 5= l;]

The X notation for NOT has a double meaning, since X can also be viewed
as the Pauli-X gate.



Pauli-Y gate

Pauli-Z gate




Hadamard gate

H |0) =

Phase gate

%IOH%ID,H\U:%IO%%ID
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Two-qubit gates

Controlled-NOT (C-NOT) gate
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Controlled Phase gate

00) — [00)  |01) — |01)  |10) — |10)  |11) — €' |11)
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SWAP gate
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Adiabatic evolution

The final Hamiltonian will be the Hamiltonian of interest. Choose an
initial Hamiltonian with a simple ground state that can be easily prepared.
We interpolate between these two Hamiltonians.

H(t:()):H[ (—H(t)—> H(t:tF)IHF

In the limit of slow time evolution, we remain in an eigenstate of H(t)
throughout

H(t) [ip(t)) = E(t) [1(t))
At the end of the time evolution, we have

Hp [¢Y(tr)) = Er |¥(tr))
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Unfortunately, adiabatic evolution is only practical for small systems
with a substantial energy gap. The error in the wave function scales as

A < max
IavI < max 50 — Bo@P

Farhi, Goldstone, Gutmann, and Sipser, quant-ph/0001106 (2000)
Roland and Cerf, Phys. Rev. A 65, 042308 (2002)
Wiebe and Babcock, New. J. Phys. 14, 013024, (2012)
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Rodeo algorithm

Kenneth Choi, D.L., Joey Bonitati, Zhengrong Qian, Jacob Watkins, PRL 127, 040505 (2021)
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Consider a single qubit and a unitary operation called the Hadamard
gate

1 1
U= Vi|=ut=u""
V22

Consider another unitary operation that is a diagonal phase rotation

We then have

+ Le=it(Bony—B)
1e=it(Boni—P)

NN | =

— Le~it(Bony—E)
_'_ %e—it(Eobj—E)
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Let us now start in the [(1)] state and perform these unitary operations

1 _ 1 _—it(Eopj—F)
Ut R(Eov;, E,t)U [O] — [% 2° ]
2 2

o —it(Eonj—E)

and then project back to the [(1)] state

00 0 0
[0 1] UTR(EObPE?t)U [ 1] — [% + %e—it(Eobj_E)]

This projection is done via quantum measurement and the success
probability is

1 1 _. o
P(Eobja E, t) = ‘5 + §€_Zt(EObJ E)

T ol [t<Eobj - E)]
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P(Eop;, E,1)
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H P(Eobj7E7tk) ‘tkl <20
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Let us couple this qubit, which we call the “arena” or “ancilla” qubit, to
another system that we call the “object”. We also promote the 2 x 2
matrices to become 2 x 2 matrices of operators acting on the object.

S U L L
V2 V2| V2 T2
1 o 1 I 0
0 eit(Bon=E) Tl e—it(Hon—E)

L LT L L
2 3 0 i V2
L _ 1| |g e-it(Honi=E)| | L __L
V2 V2 vVZ V2
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0

o) and we perform the operations and then
init

We start from the state

measure if the arena qubit is in the {(1) state
OQ]%%fﬂ 77[0]:[0
0 G —fl o e @B [ G =) Wmio] Ly g P )

V2
By repeated successful measurements with random values of ¢, we reduce
the spectral weight of eigenvectors with energies that do not match F.

The convergence is exponential. For N cycles of the rodeo algorithm, the
suppression factor for undesired energy states is 1/4%.
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FIG. 1. (color online) Circuit diagram for the rodeo algorithm.
The object system starts in an arbitrary state |17). Each of the arena
qubits are initialized in the state |1) and operated on by a Hadamard
gate H. We use each arena qubit n = 1,--- , N for the controlled
time evolution of the object Hamiltonian, H,yj, for time ¢,. This
is followed by a phase rotation P(Et,) on arena qubit n, another
Hadamard gate H, and then measurement.

Kenneth Choi, D.L., Joey Bonitati, Zhengrong Qian, Jacob Watkins, PRL 127, 040505 (2021)
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Initial-state spectral function and state preparation. The example shown
below is for a 1D Heisenberg chain with ten sites, antiferromagnetic
interactions, and uniform magnetic field.

— 3 cvcles 6 cvcles — 9 cvcles TABLE I. Overlap probability with energy eigenvector |E;) after N
y y y cycles of the rodeo algorithm using Gaussian random values for ¢,,
S with trms = 5 and E = E;.
0.30¢ E; |[N=0|N=3/N=6/N=9
i o Exact —18.1| 0.110 | 0.746 | 0.939 | 0.997

—16.4 | 0.209 | 0.841 | 0.993 | 1.000
—11.9 | 0.200 | 0.629 | 0.889 | 0.999
—9.76 | 0.0974 | 0.488 | 0.903 | 0.999
—8.38 | 0.0320 | 0.467 | 0.832 | 0.993
—6.63 | 0.0577 | 0.309 | 0.818 | 0.996
—5.81 | 0.0118 | 0.179 | 0.637 | 0.817
—5.52 | 0.115 | 0.456 | 0.766 | 0.997
—4.26 | 0.0171 | 0.144 | 0.696 | 0.995
—3.95 |0.004010.0430| 0.343 | 0.952
: —2.00 | 0.0139 | 0.158 | 0.593 | 0.942
10 20 ’ o 40 E —0.802| 0.0338 | 0.216 | 0.545 | 0.594
—0.704| 0.0331 | 0.286 | 0.540 | 0.585

2.00 |0.0357 | 0.371 | 0.925 | 0.994
2.42 [0.00235(0.0122|0.0874| 0.521

FIG. 4. (color online) Initial-state spectral function for the

Heisenberg model. We plot the initial-state spectral function us- 2.68 10.0029110.0845! 0.639 | 0.929
ing the rodeo algorithm for the Heisenberg spin chain with 3 (thin 3.39 10.005920.0360! 0.754 | 0.943
blue line), 6 (thick green line), and 9 (medium red line) cycles. We 5.96 10.0033610.0951| 0.559 | 0.981
have averaged over 20 sets of Gaussian random values for ¢,, with 7.33 10.00650| 0.184 | 0.792 | 0.978
trms = 5. For comparison, we also show the exact initial-state 8.13 10.0039310.0832! 0.665 | 0.841
spectral function with black open circles. 8.24 10.00105/0.0275! 0.142 | 0.289

10.0 {0.003970.0128| 0.295 | 0.902

|thinis) = [0101010101)
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Comparison with other well-known algorithms. Let A be the norm of the
error in the wave function.

0
-10 ]
< rodeo algorithm
2 -20- ]
= —— phase estimation
-------- adiabatic evolution
-30F ----- log Fa ]
-------- log Fg
—40 r ‘ | | | | 1
0 10 20 30 40
T




Preconditioning with adiabatic evolution

The computational effort needed for the rodeo algorithm is inversely

proportional to the overlap probability between the initial state and the
desired eigenvector.

We can use adiabatic evolution to increase this overlap probability.

TABLE 1. Overlap probability with energy eigenvector |E;)
with E = E; = —18.1 after preconditioning with adiabatic evo-

lution for time #,p and the applying N cycles of the rodeo
algorithm using Gaussian random values for 7, with 7., = 5.

—18.1 0 0.110 0.746 0.939 0.997
—18.1 5 0.83074  0.99875 0.99988 0.99999

Choi, D.L., Bonitati, Qian, Watkins, Phys. Rev. Lett. 127, 040505 (2021) -



Demonstration on a quantum computer

Demonstration of the Rodeo Algorithm on a Quantum Computer

Zhengrong Qian,l Jacob Watkins,! Gabriel Given,' Joey Bonitati,! Kenneth Choi,> and Dean Lee'

! Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, MI 48824, USA
*Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

The rodeo algorithm is an efficient algorithm for eigenstate preparation and eigenvalue estimation for any ob-
servable on a quantum computer. The only requirement is that the initial state has sufficient overlap probability
with the desired eigenstate. While it is exponentially faster than well-known algorithms such as phase estimation
and adiabatic evolution for eigenstate preparation, it has yet to be implemented on an actual quantum device.
In this work, we apply the rodeo algorithm to determine the energy levels of a random one-qubit Hamiltonian,
resulting in a relative error of 0.08% using mid-circuit measurements on the IBM Q device Casablanca. This
surpasses the accuracy of directly-prepared eigenvector expectation values using the same quantum device. We
take advantage of the high-accuracy energy determination and use the Hellmann-Feynman theorem to compute
eigenvector expectation values for different random one-qubit observable. For the Hellmann-Feynman calcu-
lations, we find a relative error of 0.7%. We conclude by discussing possible future applications of the rodeo
algorithm for multi-qubit Hamiltonians.

arXiv: 2110.07747
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Using IBM Q devices, we implement the rodeo algorithm for a one qubit
Hamiltonian. We consider a random Hamiltonian of the form

Hop; = H® = —0.084961 — 0.89134X + 0.26536Y + 0.572052

We use mid-circuit measurements without resets for the ancilla qubit

----------------------

object: ————— exp(—iHobjtk)

1
|
1
1
ancilla: H — P(Et;)
1

Operations dependent on £
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Each circuit consists of three cycles of the rodeo algorithm,
corresponding to three controlled time evolutions and three ancilla
qubit measurements. We sweep through the target energy E to
perform an energy scan of the spectrum. We perform three separate
scans of the energy, each time zooming in with more resolution.

E?na:n

Emin

1st scan 2nd scan
3
_oooil Low High
Peak 1 e
\\\ L N ]
Peak 2 T
01 02
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Single qubit Hamiltonian

o =2 (1st scan) -=-= og=2 (expected)
o=7 (2nd scan) -== og=17 (expected)

B o=12 (3rd scan) -== 0=12 (expected)
1 Noiseless simulation (1st scan)

E,  -1.1750(12) -1.1768

Rodeo Algorithm Exact

0.08% relative error

-
—— - .

IBM Casablanca

Z. Qian, J. Watkins, G. Given, J. Bonitati, K. Choi, D.L., arXiv:2110.07747
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We also use the Hellmann-Feynman theorem to compute eigenvector
expectation values for a different one qubit observable.

Hopj(¢) = H® + ¢H
H®) = —0.084961 — 0.89134X + 0.26536Y + 0.57205Z
HW = —0.845371 + 0.00673X — 0.29354Y + 0.18477Z
HO ) = En [y,)

dE,(¢)
b |,

= (| HY [y?)
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Two-state rodeo algorithm

1] P(Eo;, B, t1)
k

tx unconstrained tr = integer - 2w /AE

rodeo algorithm two-state rodeo algorithm

Bee-Lindgren, et al., work in progress
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After applying the two-state rodeo algorithm, the quantum state will
be an approximate superposition of two energy eigenstates

V) ~ cj |Ej) + ¢ | E;)
AE = E; — E;

We define the phases of the energy eigenstates so that the inner
products with the initial state is real and positive. We then have

Cj>0, c; > 0,

and their values are given by the square root of the corresponding
probability peak in the initial-state spectral function.
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Suppose we now evolve this state in time and compute the expectation
value of some Hermitian operator O as a function of time. We will find
an oscillatory signal from which we can determine the amplitude and

phase of the transition matrix element.
(Ej|O0|E;) = Ae”
(P()|0p(1))

M: 4AC] :

& "
«

=0

tAFE
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Implementation on larger systems

Two qubit Hamiltonian using IBM Q:

300 -

250 -

200 -

150 A

100 A

Bee-Lindgren, et al., work in progress
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Results obtained by
Quantinuum theory group
on Honeywell H1 system:

Results on IBM Q
Casablanca:

PON

0.8 o=2 (1st scan) --- 0=2 (expected)
o=7 (2nd scan) --- o0=7 (expected)
Bm 0=12 (3rd scan) --- 0=12 (expected)
0_7 [ Noiseless simulation (1st scan)
0.6
1
‘I
0.5 i
1
]
1
T
1
0.4 §
/
1
1
0.3 /
0.2
0.1
0.0
-3 3 E
PoN
0.8 o=2 (1st scan) --- 0=2 (expected)
o=7 (2nd scan) --- 0=7 (expected) \
B 0=12 (3rd scan) --- 0=12 (expected) I
0.7 [ Noiseless simulation (1st scan) i =I'| \
0.6
0.5
0.4
0.3
0.2
0.1 ’—‘
0.0
3 E
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Summary

We started by reviewing the basics of
quantum gates. We discussed adiabatic
theorem and adiabatic evolution.
We then presented a method called the
rodeo algorithm that can prepare any
energy eigenstate on a quantum computer
and determine the full energy spectrum.

The method is exponentially faster than
other well-known algorithms for quantum
state preparation. It requires only one
ancilla qubit to perform controlled time
evolutions and is resilient against noise. We
have discussed several applications and tests
that demonstrate the actual performance.
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