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Introduction
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The basic element in quantum computation is the qubit, which is a 
simply a two-level quantum system.

There are also extensions to systems with more than two levels, known 
as qudits.  But we will focus on qubits in these lectures.

In general, our qubit will be in a general superposition of the two states.

With proper normalization we have
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Up to an overall complex phase, we can write

Credit: Smite-Meister

This can be represented as a point on the Bloch sphere



For a two-qubit system we have the four basis states

Any arbitrary state can be written as

For the N-qubit system, any arbitrary state can be written as
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with normalization



with normalization
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One-qubit gates

Identity gate
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Since the evolution of quantum systems is unitary, all quantum gates are 
unitary.



NOT gate (= Pauli-X gate) 

If we view 0 and 1 as logical false and true, then the NOT gate 
corresponds to a logical negation or bit flip that exchanges 0 and 1.
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The X notation for NOT has a double meaning, since X can also be viewed 
as the Pauli-X gate. 



Pauli-Y gate

Pauli-Z gate
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Phase gate

Hadamard gate
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Two-qubit gates

Controlled-NOT (C-NOT) gate

XOR
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Controlled Phase gate
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SWAP gate
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The final Hamiltonian will be the Hamiltonian of interest.  Choose an 
initial Hamiltonian with a simple ground state that can be easily prepared. 
We interpolate between these two Hamiltonians.

At the end of the time evolution, we have
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In the limit of slow time evolution, we remain in an eigenstate of H(t) 
throughout

Adiabatic evolution
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Unfortunately, adiabatic evolution is only practical for small systems 
with a substantial energy gap.  The error in the wave function scales as

Farhi, Goldstone, Gutmann, and Sipser, quant-ph/0001106 (2000)
Roland and Cerf, Phys. Rev. A 65, 042308 (2002)

Wiebe and Babcock, New. J. Phys. 14, 013024, (2012)
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Rodeo algorithm



Consider a single qubit and a unitary operation called the Hadamard 
gate 

Consider another unitary operation that is a diagonal phase rotation

We then have
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Let us now start in the        state and perform these unitary operations

and then project back to the        state 

This projection is done via quantum measurement and the success 
probability is
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Let us couple this qubit, which we call the “arena” or “ancilla” qubit, to 
another system that we call the “object”.  We also promote the 2 x 2 
matrices to become 2 x 2 matrices of operators acting on the object.

We then consider the same combination



We start from the state          and we perform the operations and then  

measure if the arena qubit is in the      state

By repeated successful measurements with random values of t, we reduce 
the spectral weight of eigenvectors with energies that do not match E .  

The convergence is exponential.  For N cycles of the rodeo algorithm, the 
suppression factor for undesired energy states is 1/4N.
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Initial-state spectral function and state preparation.  The example shown 
below is for a 1D Heisenberg chain with ten sites, antiferromagnetic 
interactions, and uniform magnetic field.
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rodeo algorithm

phase estimation

adiabatic evolution

log FA

log FG
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Comparison with other well-known algorithms.  Let D be the norm of the 
error in the wave function.
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Preconditioning with adiabatic evolution

The computational effort needed for the rodeo algorithm is inversely 
proportional to the overlap probability between the initial state and the 
desired eigenvector.  

We can use adiabatic evolution to increase this overlap probability.  

Choi, D.L., Bonitati, Qian, Watkins, Phys. Rev. Lett. 127, 040505 (2021)



Demonstration on a quantum computer

arXiv: 2110.07747
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Using IBM Q devices, we implement the rodeo algorithm for a one qubit 
Hamiltonian.  We consider a random Hamiltonian of the form

We use mid-circuit measurements without resets for the ancilla qubit
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Each circuit consists of three cycles of the rodeo algorithm, 
corresponding to three controlled time evolutions and three ancilla 
qubit measurements. We sweep through the target energy E to 
perform an energy scan of the spectrum.  We perform three separate 
scans of the energy, each time zooming in with more resolution.
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Single qubit Hamiltonian

Z. Qian, J. Watkins, G. Given, J. Bonitati, K. Choi, D.L., arXiv:2110.07747

Rodeo Algorithm Exact

E1 1.00681(66) 1.00690

E2 -1.1750(12) -1.1768

IBM Casablanca

0.08% relative error



We also use the Hellmann-Feynman theorem to compute eigenvector 
expectation values for a different one qubit observable.
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0.7% relative error
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Bee-Lindgren, et al., work in progress

Two-state rodeo algorithm



After applying the two-state rodeo algorithm, the quantum state will 
be an approximate superposition of two energy eigenstates

We define the phases of the energy eigenstates so that the inner 
products with the initial state is real and positive.  We then have 

and their values are given by the square root of the corresponding 
probability peak in the initial-state spectral function. 
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Suppose we now evolve this state in time and compute the expectation 
value of some Hermitian operator O as a function of time.  We will find 
an oscillatory signal from which we can determine the amplitude and 
phase of the transition matrix element. 



Implementation on larger systems

Bee-Lindgren, et al., work in progress

Two qubit Hamiltonian using IBM Q:
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Results obtained by
Quantinuum theory group 
on Honeywell H1 system:

Results on IBM Q 
Casablanca:
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Summary

We started by reviewing the basics of
quantum gates. We discussed adiabatic
theorem and adiabatic evolution.
We then presented a method called the
rodeo algorithm that can prepare any
energy eigenstate on a quantum computer
and determine the full energy spectrum.

The method is exponentially faster than
other well-known algorithms for quantum
state preparation. It requires only one
ancilla qubit to perform controlled time
evolutions and is resilient against noise. We
have discussed several applications and tests
that demonstrate the actual performance.
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