Notes for IAV model
junzliu
April 2022

1 The problem

1.1 The reaction

The IAV model deals with the reaction which takes the form:

$$
\begin{equation*}
a+A \rightarrow b+\text { anything } \tag{1}
\end{equation*}
$$

where a is a bound state consists of x and $b(x+b)$. We call b the spectator because the experiment detects it. 'Anything' here can be seen as $x+A$, but there are a few channels:

1. $(\mathrm{x}+\mathrm{A})$ stays in the ground state, which is called the elastic reaction
2. $(x+A)$ goes to excited state, which is called the inelastic reaction
3. Particle trnasfer may occur between x and A

1.2 The post-form and prior-form

Austern and Vincent (AV) and Kasano and Ichimura (KI) develop the post-form formula of the inclusive breakup, while Li, Udagawa and Tamura (LUT) derive a similar priorform formula of the reaction. An important task is to show how these methods can be transformed from one to another. And how approximations are taken carefully to achieve a promising result.

2 Post-form derivation

2.1 The model Hamiltonian

The Hamiltonian is written as:

$$
\begin{equation*}
H=H_{A}(\xi)+K_{b}+K_{x}+V_{x A}+U_{b}+V_{b x} \tag{2}
\end{equation*}
$$

H_{A} is the internal Hamiltonian of the target nucleus A and ξ stands for its internal coordinate. K_{b} and K_{x} are the kinetic operator of b and x. $V_{x A}, V_{b x}$ and $V_{b A}$ are the interacting potentials. U_{b} stands for the optical potential which replaces $V_{b A}$. In this model we don't care about the internal state of x and b .

2.2 Notations of the states

The target nucleus ground state wave function is written as Φ_{A} with energy E_{A} :

$$
\begin{equation*}
H_{A} \Phi_{A}=E_{A} \Phi_{A} \tag{3}
\end{equation*}
$$

The eigenstate of the system $\mathrm{x}+\mathrm{A}$ is written as $\Psi_{x A}^{c}$, where the superscript c represents different channels:

$$
\begin{equation*}
H_{x A} \Psi_{x A}^{c}=\left(H_{A}+K_{x}+V_{x A}\right) \Psi_{x A}^{c}=E^{c} \Psi_{x A}^{c} \tag{4}
\end{equation*}
$$

The internal state of the projectile is denoted with $\phi_{a}\left(\boldsymbol{r}_{\boldsymbol{b} \boldsymbol{x}}\right)$ with energy E_{a}, where $\boldsymbol{r}_{\boldsymbol{b} \boldsymbol{x}}=$ $\boldsymbol{r}_{\boldsymbol{b}}-\boldsymbol{r}_{\boldsymbol{x}}$.

The optical scattering wave functions are defined as:

$$
\begin{gather*}
{\left[K_{a}+U_{a}\left(\boldsymbol{r}_{\boldsymbol{a}}\right)\right] \chi_{a}^{(+)}\left(\boldsymbol{r}_{\boldsymbol{a}}\right)=\left(E-E_{A}-E_{a}\right) \chi_{a}^{(+)}\left(\boldsymbol{r}_{\boldsymbol{a}}\right)} \tag{5}\\
{\left[K_{b}+U_{b}^{\dagger}\left(\boldsymbol{r}_{\boldsymbol{b}}\right)\right] \chi_{b}^{(-)}\left(\boldsymbol{r}_{\boldsymbol{b}}\right)=E_{b} \chi_{b}^{(-)}\left(\boldsymbol{r}_{\boldsymbol{b}}\right)} \tag{6}
\end{gather*}
$$

E_{A} is the total energy of the target nucleus A , and E_{a} is the total energy of the projectile a. E_{b} is the relative kinetic energy between b and B. $\chi_{a}^{(+)}\left(\boldsymbol{r}_{\boldsymbol{a}}\right)$ is the initial scattering state between a and A. $\chi_{b}^{(-)}\left(\boldsymbol{r}_{\boldsymbol{b}}\right)$ is the final scattering state between b and B .

2.3 Cross section

The general post-form DWBA expression for the inclusive breakup of the outgoing spectator b is:

$$
\begin{equation*}
\left.\left.\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega_{b} \mathrm{~d} E_{b}}\right|_{\text {post }}=\frac{2 \pi}{\hbar v_{a}} \rho\left(E_{b}\right) \sum_{c}\left|\left\langle\chi_{b}^{(-)} \Psi_{x A}^{c}\right| V_{\text {post }}\right| \chi_{a}^{(+)} \phi_{a} \Phi_{A}\right\rangle\left.\right|^{2} \delta\left(E-E_{b}-E^{c}\right) \tag{7}
\end{equation*}
$$

where $\left|\chi_{b}^{(-)} \Psi_{x A}^{c}\right\rangle$ represents the final state and $\left|\chi_{a}^{(+)} \phi_{a} \Phi_{A}\right\rangle$ represents the initial state. This reveals the core idea of the DWBA approximation.

The delta function can be replaced with the principal value therom:

$$
\begin{equation*}
\delta\left(E-E_{b}-E^{c}\right)=\frac{-1}{\pi} \operatorname{Im}\left(E^{+}-E_{b}-E^{c}\right)^{-1} \tag{8}
\end{equation*}
$$

so the cross section reads:

$$
\begin{align*}
\left.\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega_{b} \mathrm{~d} E_{b}}\right|_{\text {post }}= & \frac{-2}{\hbar v_{a}} \rho\left(E_{b}\right) \sum_{c}\left\langle\chi_{a}^{(+)} \phi_{a} \Phi_{A} \mid \chi_{b}^{(-)} \Psi_{x A}^{c}\right\rangle \tag{9}\\
& \times \operatorname{Im}\left(E^{+}-E_{b}-E^{c}\right)^{-1}\left\langle\Psi_{x A}^{c} \chi_{b}^{(-)}\right| V_{\text {post }}\left|\chi_{a}^{(+)} \phi_{a} \Phi_{A}\right\rangle
\end{align*}
$$

replace E^{c} with $H_{x A}$ and then use the complete relationship:

$$
\begin{align*}
\left.\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega_{b} \mathrm{~d} E_{b}}\right|_{\text {post }}= & \left.\frac{-2}{\hbar v_{a}} \rho\left(E_{b}\right)\left\langle\chi_{a}^{(+)} \phi_{a} \Phi_{A}\right| \chi_{b}^{(-)}\right) \\
& \times\left[\sum_{c} \operatorname{Im}\left(E^{+}-E_{b}-H_{x A}\right)^{-1}\left|\Psi_{x A}^{c}\right\rangle\left\langle\Psi_{x A}^{c}\right|\right]\left(\chi_{b}^{(-)}\left|V_{\text {post }}\right| \chi_{a}^{(+)} \phi_{a} \Phi_{A}\right\rangle \tag{10}
\end{align*}
$$

Define the source term:

$$
\begin{equation*}
\left|\rho_{b}\left(\boldsymbol{r}_{\boldsymbol{b}}\right)\right\rangle=\left(\chi_{b}^{(-)}\left|V_{\text {post }}\right| \chi_{a}^{(+)} \phi_{a} \Phi_{A}\right\rangle \tag{11}
\end{equation*}
$$

which is a state vector in one subspace of the whole three-body Hilbert space.
Then carry out the optical reduction:

$$
\begin{align*}
\left(\Psi_{A}\left|\left(E^{+}-E_{b}-H_{x A}\right)^{-1}\right| \Psi_{A}\right) & =\left(\Psi_{A}\left|\left(E^{+}-E_{b}-H_{A}-K_{x}-V_{x A}\right)^{-1}\right| \Psi_{A}\right) \\
& =\left(\Psi_{A}\left|\left(E_{x}^{+}-K_{x}-V_{x A}\right)^{-1}\right| \Psi_{A}\right) \\
& =\left(\Psi_{A}\left|\left(E_{x}^{+}-K_{x}-U_{x}\right)^{-1}\right| \Psi_{A}\right) \tag{12}\\
& =\left(E_{x}^{+}-K_{x}-U_{x}\right)^{-1}\left(\Psi_{A} \mid \Psi_{A}\right) \\
& =\left(E_{x}^{+}-K_{x}-U_{x}\right)^{-1}
\end{align*}
$$

where $E_{x}^{+}=E^{+}-E_{b}-E_{A}$. Finally, define the Green operator:

$$
\begin{equation*}
G_{x} \equiv\left(E_{x}^{+}-K_{x}-U_{x}\right)^{-1} \tag{13}
\end{equation*}
$$

we arrive at the final form:

$$
\begin{equation*}
\left.\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega_{b} \mathrm{~d} E_{b}}\right|_{\text {post }}=\frac{-2}{\hbar v_{a}} \rho\left(E_{b}\right) \times\left\langle\rho_{b}\left(\boldsymbol{r}_{\boldsymbol{b}}\right)\right| \operatorname{Im} G_{x}\left|\rho_{b}\left(\boldsymbol{r}_{\boldsymbol{b}}\right)\right\rangle \tag{14}
\end{equation*}
$$

2.4 Green's operator

Two Green's operator are defines as:

$$
\begin{gather*}
G_{x}=\left(E_{x}^{+}-K_{x}-U_{x}\right)^{-1} \tag{15}\\
G_{0}=\left(E_{x}^{+}-K_{x}\right)^{-1} \tag{16}
\end{gather*}
$$

They satisfy the following relation:

$$
\begin{align*}
G_{x} & =G_{0}\left(1+U_{x} G_{x}\right) \\
& =\left(1+G_{x}^{\dagger} U_{x}^{\dagger}\right) G_{0}\left(1+U_{x} G_{x}\right)-G_{x}^{\dagger} U_{x}^{\dagger} G_{x} \tag{17}
\end{align*}
$$

$$
\begin{equation*}
G_{x}^{\dagger}=\left(1+G_{x}^{\dagger} U_{x}^{\dagger}\right) G_{0}^{\dagger}\left(1+U_{x} G_{x}\right)-G_{x}^{\dagger} U_{x} G_{x} \tag{18}
\end{equation*}
$$

so the imaginary part reads:

$$
\begin{align*}
\operatorname{Im} G_{x} & =\frac{1}{2 i}\left(G_{x}-G_{x}^{\dagger}\right) \tag{19}\\
& =\left(1+G_{x}^{\dagger} U_{x}^{\dagger}\right) \operatorname{Im} G_{0}\left(1+U_{x} G_{x}\right)+G_{x}^{\dagger} W_{x} G_{x}
\end{align*}
$$

The two terms above seperate the cross section into two parts:

$$
\begin{equation*}
\left.\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega_{b} \mathrm{~d} E_{b}}\right|_{\text {post }}=\left.\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega_{b} \mathrm{~d} E_{b}}\right|_{\text {post }} ^{\text {EB }}+\left.\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \Omega_{b} \mathrm{~d} E_{b}}\right|_{\text {post }} ^{\mathbf{B F}} \tag{20}
\end{equation*}
$$

