1. Constructions of the χ_i^W from the CDCC wave function

- solve the CDCC equations using nucleon optical potentials
- the optical potentials: $U_n, U_p \rightarrow$ taken from the KD02 systematics
- \bullet discretize the s-wave n-p continuum to compute the bin states ϕ^{bin}

2. Using the coefficients C_{ij}

• with the coefficients C_{ij} given by

$$C_{i0} = -\left\langle \phi_i^W \right| V_{np} \left| \phi_d \right\rangle \quad (i \neq 1)$$

$$C_{ij} = -\left\langle \phi_i^W \middle| V_{np} \middle| \phi_j^{bin} \right\rangle \quad (i, j = 1, 2, \dots)$$

• then the Weinberg state

$$\chi_i^W(\boldsymbol{R}) = C_{i0}\chi_0(\boldsymbol{R}) + \sum_{j=1} C_{ij}\chi_j^{bin}(\boldsymbol{R})$$

Your Name

Calculations the Weinberg distorted waves

The result of χ_i^W

Figure 1: Selected partial waves of the Weinberg components χ_i^W for the $^{132}Sn(stannum)(d,p)^{133}Sn(stannum)$ reaction, with different maximum n-p continuum energy and different partial wave values L.

- good convergence with respect to n-p continuum energy
- the value of χ_1^W is significantly larger than that of χ_2^W in the selected region.

Calculations the Weinberg distorted waves

the dominance of χ_1^W

Figure 2: Calculated Weinberg distorted waves χ_i^W for $E_d = 100 MeV$ and $E_d = 30 MeV$ in the ${}^{132}Sn(stannum)(d, p){}^{133}Sn(stannum)$ reaction, demonstrating the dominance of χ_1^W .

Your Name

Calculations differential cross sections

Figure 3: The differential cross sections for the ${}^{132}Sn(stannum)(d, p){}^{133}Sn(stannum)$ reaction, using Weinberg distorted wave components $\chi_1^W, \chi_2^W, \chi_3^W$, the CDCC calculations and the sum of DW χ_i A fit very well

Your Name

Conclusion

Conclusion 1

The dominant effects of deuteron breakup on the calculations of (d, p) reaction observables can be accommodated with one-channel distorted wave calculation.

Conclusion 2

The one-channel distorted-wave calculation corresponds to the dominance of χ_1^W .

Conclusion 3

These calculations go beyond the DWBA method because no Born approximation is involved.

• Maybe optimizing the calculation of the Weinberg states is more important than showing the convergence, because there are many bin states selected from CDCC.

Thank You!

(ロ) (日) (日) (日) (日)