2023.09.19 Journal Club

Reading Phys. Lett. B 8709, 135719 (2020)

Efficient emulators for scattering using eigenvector continuation

Junzhe Liu
Yijie Xu

KVP method

$$
D u_{\mathrm{exat}}(r)=\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+U(r)-p^{2}\right) u_{\mathrm{exat}}(r)=0
$$

1. Introduce a functional

Parameter dependent potential

2. Put into some ansatz as trial
3. Solve the optimization problem

$$
\begin{aligned}
& \beta\left[u_{\mathrm{t}}\right]=\tau_{\text {trial }}-\int_{0}^{\infty} d r u_{\mathrm{t}}(r) D u_{\mathrm{t}}(r) \quad u=\sum_{i} c_{i} \psi_{i} \\
& u_{t}(r) \underset{r \rightarrow \infty}{\longrightarrow} \frac{1}{p} \sin \left(p r-\ell \frac{\pi}{2}\right)+\tau_{\text {trial }} \cos \left(p r-\ell \frac{\pi}{2}\right)
\end{aligned}
$$

We choose a set of basis functions, and minimize the functional by selecting the coefficients

How to construct the functional

Boundary condition of scattering wave function (Definition of the K-matrix)

$$
\begin{gathered}
u_{\ell, E}(r) \underset{r \rightarrow \infty}{\longrightarrow} \frac{1}{p} \sin \left(p r-\ell \frac{\pi}{2}\right)+\frac{\mathscr{K}_{\ell}(E)}{p} \cos \left(p r-\ell \frac{\pi}{2}\right) \\
\mathscr{K}_{\ell}(E)=\tan \left(\delta_{\ell}\right)
\end{gathered}
$$

Take a variation at the exact scattering wave function

$$
\delta \beta=\delta \tau-\int_{0}^{\infty} d r u_{\mathrm{exact}}(r) D \delta u(r)+\mathcal{O}\left(\delta u^{2}\right)
$$

Carry out the integration by parts for two times

$$
\begin{aligned}
\int_{0}^{\infty} d r u_{\text {exact }}(r) D \delta u(r) \% & =\int_{0}^{\infty} d r u_{\text {exact }}(r)\left(-\frac{d^{2}}{d r^{2}}+\frac{\ell(\ell+1)}{r^{2}}+U(r)-p^{2}\right) u_{\mathrm{exat}} \delta u(r) \\
& =\left.\left(u_{\text {exact }} \delta u^{\prime}-u_{\text {exact }}^{\prime} \delta u\right)\right|_{0} ^{\infty}+\int d r u D u_{\text {exat }}
\end{aligned}
$$

How to construct the functional

With the boundary condition and some sin/cos algebras

$$
\left.\left(u_{\text {exact }} \delta u^{\prime}-u_{\text {exact }}^{\prime} \delta u\right)\right|_{0} ^{\infty}=\delta \tau
$$

So we have proved

$$
\left.\delta \beta[u]\right|_{u_{\text {exact }}}=\delta \tau-\delta \tau=0
$$

Remind that $\quad \beta\left[u_{\text {exact }}\right]=\frac{1}{p}\left[\mathscr{K}_{t}(E)\right]_{\text {exact }}=\frac{1}{p}\left[\tan \delta_{\ell}(E)\right]_{\text {exact }}$

EC with KVP

EC provides us with a set of basis, and reduce the size of the basis

$$
\text { Snapshots } \quad D\left(\boldsymbol{\theta}_{i}\right) u_{i}=0 \quad i=1,2, \ldots, N_{b}
$$

Differential equation

Finite difference

Number of the grid points >> N_{b}

Linear equation

Size of the matrix $\gg N_{b}$

R-matrix: solve the large linear equations "exactly" for 1000 times
EC: solve "exactly" N_{b} times + emulate other situations $1000-N_{b}$ times

EC with KVP

Insert the trial solution into the functional

$$
\begin{aligned}
\beta\left[u_{\mathrm{t}}\right] & =\sum_{j} c_{j} \tau_{j}(E)-\sum_{j k} c_{j} c_{k} \int_{0}^{\infty} d r u_{j}(r ; E)\left[-\frac{d^{2}}{d r^{2}}+\frac{l(l+1)}{r^{2}}+2 \mu V(r ; \boldsymbol{\theta})-p^{2}\right] u_{k}(r ; E) \\
& =\sum_{j} c_{j} \tau_{j}-\sum_{j k} c_{j} c_{k} \int_{0}^{\infty} d r u_{j}(r ; E)(2 \mu)\left[V(r ; \boldsymbol{\theta})-V_{k}(r)\right] u_{k}(r ; E)
\end{aligned}
$$

Define the U matrix for convenient

$$
\Delta U=\int_{0}^{\infty} d r u_{j}(r ; E)(2 \mu)\left[V(r ; \boldsymbol{\theta})-V_{k}(r)\right] u_{k}(r ; E)
$$

The functional now turns into a matrix form

$$
\beta=\sum_{j} c_{j} \tau_{j}-\sum_{j k} c_{j} c_{k} \Delta U_{j k}
$$

EC with KVP

Take the partial derivatives and add an Lagrange multiplier

$$
\begin{aligned}
& \frac{\partial}{\partial c_{i}}\left[\sum_{j} c_{j} \tau_{j}-\sum_{j k} c_{j} c_{k} \Delta U_{j k}-\lambda\left(\sum_{j} c_{j}-1\right)\right]=0 \\
& \frac{\partial}{\partial \lambda}\left[\sum_{j} c_{j} \tau_{j}-\sum_{j k} c_{j} c_{k} \Delta U_{j k}-\lambda\left(\sum_{j} c_{j}-1\right)\right]=0 .
\end{aligned}
$$

Finally we have the expression for the coefficients and multiplier

$$
c_{j}=\sum_{i}(\Delta \widetilde{U})_{j i}^{-1}\left(\tau_{i}-\lambda\right) \quad \lambda=\frac{\sum_{i j}(\Delta \widetilde{U})_{j i}^{-1} \tau_{i}}{\sum_{i j}(\Delta \widetilde{U})_{j i}^{-1}}
$$

Kohn anomalous issues

The matrix to be inverted may be expected to be increasingly illconditioned as the basis size increases.

1. Complex formulation of S-matrix
2. Pseudo inverse method
3. Regularization: adding a small value to the diagonal

$$
\text { Nugget: } 10^{-8} \sim 10^{-10}
$$

N-N scattering

$$
\begin{aligned}
& V_{1_{S_{0}}}(r) \equiv V_{0 R} e^{-\kappa_{R} r^{2}}+V_{0 s} e^{-\kappa_{s} r^{2}} \\
& V_{{ }_{3} S_{1}}(r) \equiv V_{0 R} e^{-\kappa_{R} r^{2}}+V_{0 t} e^{-\kappa_{t} r^{2}}
\end{aligned}
$$

N-N scattering

Latin-hypercube sampling method

N-N scattering

Other applications

$$
p-\alpha \text { scattering }
$$

$$
V_{\ell}\left(r^{\prime}, r\right)=V_{p \alpha, \ell}^{(0)} r^{\ell} r^{\ell} e^{-\beta_{\ell}\left(r^{\prime}+r\right)}
$$

$\alpha-{ }^{208} \mathrm{~Pb}$ scattering
Woods-Saxon form

Summary

EC basis for KVP is accurate and efficient:

1. It can produce good results compared with the exact R-matrix method
2. Instead of carrying out the diagonalization, only the inverse operations and some multiplication are need.

But there are some limitations:

1. Can only deal with a specific energy
2. Can only deal with a specific partial wave
3. Cannot emulate the observable
