2023.06.27 Group meeting

Reading Phys. Rev. C 87, o64613 (2013)

Rapid convergence of the Weinberg expansion of the deuteron stripping amplitude

Junzhe Liu
Jizheng Bo

Transfer amplitude for (d, p)

T matrix can be expressed as

$$
T_{d p}=\left\langle\chi_{p}^{(-)} \psi_{n}\right| V_{n p}\left|\Psi^{(+)}\right\rangle
$$

χ_{p} is the scattering wave function of the outgoing proton ψ_{n} is the overlap function which describes the relative motion of the neutron

Different expansion of the three body wave function lead to different models:

DWBA method: $\quad \Psi^{\text {DWBA }}=\phi_{d} \chi_{o}$
CDCC method: $\quad \Psi^{\mathrm{CDCC}}=\phi_{d} \chi_{o}+\sum_{i} \phi_{i}^{\mathrm{bin}} \chi_{i}^{\mathrm{bin}}$
Weinberg state: $\quad \Psi^{\mathrm{WSE}}=\sum_{i} \phi_{i}^{\mathrm{W}} \chi_{i}^{\mathrm{W}}$

Weinberg states expansion

Wave function has the expansion: $\quad \Psi^{\mathrm{WSE}}=\sum_{i} \phi_{i}^{\mathrm{W}} \chi_{i}^{\mathrm{W}}$
Weinberg states are defined as the solution of the eigenvalue problem:

$$
\left[-\epsilon_{d}-T_{r}-\alpha_{i} V_{n p}\right] \phi_{i}(\mathbf{r})=0, \quad i=1,2, \ldots
$$

They satisfy a different orthogonal relation

$$
\left\langle\phi_{i}^{W}\right| V_{\mathrm{np}}\left|\phi_{j}^{W}\right\rangle=-\delta_{i j}
$$

The first Weinberg state is defined to be proportional to the ground state wave function:

Choose the first eigenvalue to be one: $\quad \alpha_{1}=1$

Why Weinberg states?

T matrix

$$
T_{d p}=\left\langle\chi_{p}^{(-)} \psi_{n}\right| V_{n p}\left|\Psi^{(+)}\right\rangle
$$

Instead of the full three-body wave function, what we really need is the projected three body wave function $V_{n p}\left|\Psi^{(+)}\right\rangle$
$V_{n p}$ is a short range interaction, only the inner part of the wave function is required.

$$
\left[-\epsilon_{d}-T_{r}-\alpha_{i} V_{n p}\right] \phi_{i}(\mathbf{r})=0, \quad i=1,2, \ldots
$$

Square integrable, discrete basis only for the short range.

Coupled equation for Weinberg states

The Schrödinger euation of the 3 B wave function:

$$
\left[E_{d}+i \epsilon-H_{n p}-T_{R}-U_{n}\left(\boldsymbol{r}_{n}\right)-U_{p}\left(\boldsymbol{r}_{p}\right)\right] \Psi^{(+)}(\boldsymbol{r}, \boldsymbol{R}) \quad=i \epsilon \phi_{d}(\boldsymbol{r}) e^{i \boldsymbol{K}_{d} \cdot \boldsymbol{R}}
$$

Carry out the projection, and we obtain the coupled equation:

$$
\left[E_{d}+i \epsilon-T_{R}\right]\left|\chi_{i}^{(+)}\right\rangle=i \epsilon \delta_{i 1} N_{d}|\mathbf{K}\rangle+\sum_{j=1}^{N} U_{i j}(\mathbf{R})\left|\chi_{j}^{(+)}\right\rangle
$$

The coupling potential is much more complicated, because the Weinberg basis is not the eigenfunction of the n - p hamiltonian

$$
\begin{aligned}
& U_{i j}(\mathbf{R})=V_{i j}(\mathbf{R})+C_{i j} \text { Coupling constant } \\
& V_{i j}(\mathbf{R})=-\left\langle\phi_{i}\right| V_{n p} U(\mathbf{r}, \mathbf{R})\left|\phi_{j}\right\rangle \\
& C_{i j}=\beta_{i j}\left(\alpha_{j}-1\right), \quad \beta_{i j}=\left\langle\phi_{i}\right| V_{n p}^{2}\left|\phi_{j}\right\rangle
\end{aligned}
$$

Transformation between CDCC and WSE

WSE and CDCC is related with

$$
\chi_{i}^{W}(\boldsymbol{R})=C_{i 0} \chi_{0}(\boldsymbol{R})+\sum_{j=1} C_{i j} \chi_{j}^{\mathrm{bin}}(\boldsymbol{R})
$$

Coefficient can be determined with the orthogonal relation:

$$
\begin{gathered}
\left\langle\phi_{i}^{W}\right| V_{\mathrm{np}}\left|\phi_{j}^{W}\right\rangle=-\delta_{i j} \\
C_{i 0}=-\left\langle\phi_{i}^{W}\right| V_{n p}\left|\phi_{d}\right\rangle \quad(=0, \quad i \neq 1) \\
C_{i j}=-\left\langle\phi_{i}^{W}\right| V_{n p}\left|\phi_{j}^{\mathrm{bin}}\right\rangle \quad(i, j=1,2, \ldots)
\end{gathered}
$$

Coefficient determined by CDCC

