2023.2.28组会

刘隽喆

Fig1: ²⁰⁸Pb(⁶Li, αX)非弹性截面关于角动量 l_a 的分布

Fig 2: 208 Pb(6 Li, αX)非弹性截面关于角动量 l_x 的分布

内部波函数: 在IAV模型中直接贡献截面

表面波函数: 对总截面无贡献

边界条件: 决定弹性散射部分

Fig 3: ²⁰⁸Pb(⁶Li, *αX*)的光学势虚部和x-A波函数

Fig 4: 208 Pb(d, pX)非弹性截面关于角动量 l_x 的分布

内部波函数: 发生显著改变

表面波函数: 并未发生变化

边界条件: 决定弹性散射部分

Fig 5: ²⁰⁸Pb(*d*, *pX*)的光学势虚部和x-A波函数

各个系统相对误差的对比

Fig 6: (d, pX)和(⁶Li, αX)体系表面近似的误差

温度图的绘制细节

还原角度依赖的波函数

$$\psi(\mathbf{r}) = \sum_{l} i^{l} (2l+1) \frac{u_{l}(r)}{kr} P_{l}(\cos\theta)$$

存储在二维数组里输出,读取进matplotlib绘图

输出文本文件,利用excel表格导入文本文件

利用pandas库对excel的兼容性,将表格数据存储进pandas的对象

将pandas数组转换为numpy数组进行绘图

Fig 7: ²⁰⁸Pb(⁶Li, αX)@30 MeV入射波函数的温度图

Fig 8: ²⁰⁸Pb(⁶Li, αX)@40 MeV入射波函数的温度图

Fig 9: ²⁰⁸Pb(⁶Li, αX)@60 MeV入射波函数的温度图

Fig 10: ²⁰⁸Pb(⁶Li, αX)@80 MeV入射波函数的温度图

Fig 11: ²⁰⁸Pb(⁶Li, αX)@100 MeV入射波函数的温度图

Fig 12: ²⁰⁸Pb(*d*, *pX*)@8 MeV入射波函数的温度图

Fig 13: ²⁰⁸Pb(*d*, *pX*)@20 MeV入射波函数的温度图

Fig 14: ²⁰⁸Pb(*d*, *pX*)@30 MeV入射波函数的温度图

Fig 15: ²⁰⁸Pb(*d*, *pX*)@50 MeV入射波函数的温度图

Fig 16: ²⁰⁸Pb(*d*, *pX*)@70 MeV入射波函数的温度图